Loading…

Somatic Integration of an Oncogene-Harboring Sleeping Beauty Transposon Models Liver Tumor Development in the Mouse

The Sleeping Beauty (SB) transposon system can integrate foreign sequences of DNA in the genome of mouse somatic cells eliciting long-term expression in vivo. This technology holds great promise for human gene therapy as a nonviral technology to deliver therapeutic genes. SB also provides a means to...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2005-11, Vol.102 (47), p.17059-17064
Main Authors: Carlson, Corey M., Joel L. Frandsen, Nicole Kirchhof, McIvor, R. Scott, Largaespada, David A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-fad1ae298281ff0240fd849a04d0b3c24ff069bcea78369638f6268d4a86bf1a3
cites cdi_FETCH-LOGICAL-c529t-fad1ae298281ff0240fd849a04d0b3c24ff069bcea78369638f6268d4a86bf1a3
container_end_page 17064
container_issue 47
container_start_page 17059
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Carlson, Corey M.
Joel L. Frandsen
Nicole Kirchhof
McIvor, R. Scott
Largaespada, David A.
description The Sleeping Beauty (SB) transposon system can integrate foreign sequences of DNA in the genome of mouse somatic cells eliciting long-term expression in vivo. This technology holds great promise for human gene therapy as a nonviral technology to deliver therapeutic genes. SB also provides a means to study the effects of defined genetic elements, such as oncogenes, on somatic cells in mice. Here, we test the ability of the SB transposon system to facilitate somatic integration of a transposon containing an activated NRAS oncogene in mouse hepatocytes to elicit tumor formation. NRAS oncogene-driven tumors developed when such vectors were delivered to the livers of p19Arf-null or heterozygous mice. Delivery of the NRAS transposon cooperates with Arf loss to cause carcinomas of hepatocellular or biliary origin. These tumors allowed characterization of transposon integration and expression at the single-cell level, revealing robust NRAS expression and both transposase-mediated and random insertion of delivered vectors. Random integration and expression of the SB transposase plasmid was also observed in one instance. In addition, studies using effector loop mutants of activated NRAS provide evidence that mitogen-activated protein kinase activation alone cannot efficiently induce liver carcinomas. This system can be used to rapidly model tumors caused by defined genetic changes.
doi_str_mv 10.1073/pnas.0502974102
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68822226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4152352</jstor_id><sourcerecordid>4152352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-fad1ae298281ff0240fd849a04d0b3c24ff069bcea78369638f6268d4a86bf1a3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEokvhzAUhiwNSD2nHjuPYFyQohVZa1EOXs-Ukk21WiR1sZ0X_PV7tqgtcalnyyP7mzYxflr2lcE6hKi4ma8I5lMBUxSmwZ9mCgqK54AqeZwsAVuWSM36SvQphAwCqlPAyO6GCSSEELLJw50YT-4bc2Ihrn0JnieuIseTWNm6NFvNr42vne7smdwPitAu-oJnjA1l5Y8PkQsr54VocAln2W_RkNY_Ok6-4xcFNI9pIekviPSZqDvg6e9GZIeCbw3ma_fx2tbq8zpe3328uPy_zpmQq5p1pqUGmJJO064Bx6FrJlQHeQl00jKdLoeoGTSULoUQhO8GEbLmRou6oKU6zT3vdaa5HbJvUhzeDnnw_Gv-gnen1vy-2v9drt9WUyUoJkQQ-HgS8-zVjiHrsQ4PDYCymQbSQkqX1NEhVocqqoAn88B-4cbO36Rc0A1qkmhQSdLGHGu9C8Ng9tkxB72zXO9v10faU8f7vSY_8wecEkAOwyzzKMc0rTSsoVULOnkB0Nw9DxN8xse_27CZE5x9hTktWpP0H3oDMng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201366310</pqid></control><display><type>article</type><title>Somatic Integration of an Oncogene-Harboring Sleeping Beauty Transposon Models Liver Tumor Development in the Mouse</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Carlson, Corey M. ; Joel L. Frandsen ; Nicole Kirchhof ; McIvor, R. Scott ; Largaespada, David A.</creator><creatorcontrib>Carlson, Corey M. ; Joel L. Frandsen ; Nicole Kirchhof ; McIvor, R. Scott ; Largaespada, David A.</creatorcontrib><description>The Sleeping Beauty (SB) transposon system can integrate foreign sequences of DNA in the genome of mouse somatic cells eliciting long-term expression in vivo. This technology holds great promise for human gene therapy as a nonviral technology to deliver therapeutic genes. SB also provides a means to study the effects of defined genetic elements, such as oncogenes, on somatic cells in mice. Here, we test the ability of the SB transposon system to facilitate somatic integration of a transposon containing an activated NRAS oncogene in mouse hepatocytes to elicit tumor formation. NRAS oncogene-driven tumors developed when such vectors were delivered to the livers of p19Arf-null or heterozygous mice. Delivery of the NRAS transposon cooperates with Arf loss to cause carcinomas of hepatocellular or biliary origin. These tumors allowed characterization of transposon integration and expression at the single-cell level, revealing robust NRAS expression and both transposase-mediated and random insertion of delivered vectors. Random integration and expression of the SB transposase plasmid was also observed in one instance. In addition, studies using effector loop mutants of activated NRAS provide evidence that mitogen-activated protein kinase activation alone cannot efficiently induce liver carcinomas. This system can be used to rapidly model tumors caused by defined genetic changes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0502974102</identifier><identifier>PMID: 16286660</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cancer ; Carcinoma - etiology ; Carcinoma - genetics ; Carcinoma - pathology ; Cell lines ; Cyclin-Dependent Kinase Inhibitor p16 ; Disease Models, Animal ; DNA ; DNA Transposable Elements ; Gene therapy ; Genetic transposition ; Genetics ; Heterozygote ; Homozygote ; Humans ; Liver ; Liver Neoplasms - etiology ; Liver Neoplasms - genetics ; Liver Neoplasms - pathology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Oncogenes ; Plasmids ; Rodents ; Somatic cells ; Spleen - pathology ; Transposases - genetics ; Transposases - metabolism ; Transposons ; Tumor cell line ; Tumor Suppressor Protein p14ARF - genetics ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-11, Vol.102 (47), p.17059-17064</ispartof><rights>Copyright 2005 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 22, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-fad1ae298281ff0240fd849a04d0b3c24ff069bcea78369638f6268d4a86bf1a3</citedby><cites>FETCH-LOGICAL-c529t-fad1ae298281ff0240fd849a04d0b3c24ff069bcea78369638f6268d4a86bf1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4152352$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4152352$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16286660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carlson, Corey M.</creatorcontrib><creatorcontrib>Joel L. Frandsen</creatorcontrib><creatorcontrib>Nicole Kirchhof</creatorcontrib><creatorcontrib>McIvor, R. Scott</creatorcontrib><creatorcontrib>Largaespada, David A.</creatorcontrib><title>Somatic Integration of an Oncogene-Harboring Sleeping Beauty Transposon Models Liver Tumor Development in the Mouse</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Sleeping Beauty (SB) transposon system can integrate foreign sequences of DNA in the genome of mouse somatic cells eliciting long-term expression in vivo. This technology holds great promise for human gene therapy as a nonviral technology to deliver therapeutic genes. SB also provides a means to study the effects of defined genetic elements, such as oncogenes, on somatic cells in mice. Here, we test the ability of the SB transposon system to facilitate somatic integration of a transposon containing an activated NRAS oncogene in mouse hepatocytes to elicit tumor formation. NRAS oncogene-driven tumors developed when such vectors were delivered to the livers of p19Arf-null or heterozygous mice. Delivery of the NRAS transposon cooperates with Arf loss to cause carcinomas of hepatocellular or biliary origin. These tumors allowed characterization of transposon integration and expression at the single-cell level, revealing robust NRAS expression and both transposase-mediated and random insertion of delivered vectors. Random integration and expression of the SB transposase plasmid was also observed in one instance. In addition, studies using effector loop mutants of activated NRAS provide evidence that mitogen-activated protein kinase activation alone cannot efficiently induce liver carcinomas. This system can be used to rapidly model tumors caused by defined genetic changes.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Carcinoma - etiology</subject><subject>Carcinoma - genetics</subject><subject>Carcinoma - pathology</subject><subject>Cell lines</subject><subject>Cyclin-Dependent Kinase Inhibitor p16</subject><subject>Disease Models, Animal</subject><subject>DNA</subject><subject>DNA Transposable Elements</subject><subject>Gene therapy</subject><subject>Genetic transposition</subject><subject>Genetics</subject><subject>Heterozygote</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Liver</subject><subject>Liver Neoplasms - etiology</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - pathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Oncogenes</subject><subject>Plasmids</subject><subject>Rodents</subject><subject>Somatic cells</subject><subject>Spleen - pathology</subject><subject>Transposases - genetics</subject><subject>Transposases - metabolism</subject><subject>Transposons</subject><subject>Tumor cell line</subject><subject>Tumor Suppressor Protein p14ARF - genetics</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhSMEokvhzAUhiwNSD2nHjuPYFyQohVZa1EOXs-Ukk21WiR1sZ0X_PV7tqgtcalnyyP7mzYxflr2lcE6hKi4ma8I5lMBUxSmwZ9mCgqK54AqeZwsAVuWSM36SvQphAwCqlPAyO6GCSSEELLJw50YT-4bc2Ihrn0JnieuIseTWNm6NFvNr42vne7smdwPitAu-oJnjA1l5Y8PkQsr54VocAln2W_RkNY_Ok6-4xcFNI9pIekviPSZqDvg6e9GZIeCbw3ma_fx2tbq8zpe3328uPy_zpmQq5p1pqUGmJJO064Bx6FrJlQHeQl00jKdLoeoGTSULoUQhO8GEbLmRou6oKU6zT3vdaa5HbJvUhzeDnnw_Gv-gnen1vy-2v9drt9WUyUoJkQQ-HgS8-zVjiHrsQ4PDYCymQbSQkqX1NEhVocqqoAn88B-4cbO36Rc0A1qkmhQSdLGHGu9C8Ng9tkxB72zXO9v10faU8f7vSY_8wecEkAOwyzzKMc0rTSsoVULOnkB0Nw9DxN8xse_27CZE5x9hTktWpP0H3oDMng</recordid><startdate>20051122</startdate><enddate>20051122</enddate><creator>Carlson, Corey M.</creator><creator>Joel L. Frandsen</creator><creator>Nicole Kirchhof</creator><creator>McIvor, R. Scott</creator><creator>Largaespada, David A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051122</creationdate><title>Somatic Integration of an Oncogene-Harboring Sleeping Beauty Transposon Models Liver Tumor Development in the Mouse</title><author>Carlson, Corey M. ; Joel L. Frandsen ; Nicole Kirchhof ; McIvor, R. Scott ; Largaespada, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-fad1ae298281ff0240fd849a04d0b3c24ff069bcea78369638f6268d4a86bf1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Carcinoma - etiology</topic><topic>Carcinoma - genetics</topic><topic>Carcinoma - pathology</topic><topic>Cell lines</topic><topic>Cyclin-Dependent Kinase Inhibitor p16</topic><topic>Disease Models, Animal</topic><topic>DNA</topic><topic>DNA Transposable Elements</topic><topic>Gene therapy</topic><topic>Genetic transposition</topic><topic>Genetics</topic><topic>Heterozygote</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Liver</topic><topic>Liver Neoplasms - etiology</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - pathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Oncogenes</topic><topic>Plasmids</topic><topic>Rodents</topic><topic>Somatic cells</topic><topic>Spleen - pathology</topic><topic>Transposases - genetics</topic><topic>Transposases - metabolism</topic><topic>Transposons</topic><topic>Tumor cell line</topic><topic>Tumor Suppressor Protein p14ARF - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlson, Corey M.</creatorcontrib><creatorcontrib>Joel L. Frandsen</creatorcontrib><creatorcontrib>Nicole Kirchhof</creatorcontrib><creatorcontrib>McIvor, R. Scott</creatorcontrib><creatorcontrib>Largaespada, David A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlson, Corey M.</au><au>Joel L. Frandsen</au><au>Nicole Kirchhof</au><au>McIvor, R. Scott</au><au>Largaespada, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Somatic Integration of an Oncogene-Harboring Sleeping Beauty Transposon Models Liver Tumor Development in the Mouse</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-11-22</date><risdate>2005</risdate><volume>102</volume><issue>47</issue><spage>17059</spage><epage>17064</epage><pages>17059-17064</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Sleeping Beauty (SB) transposon system can integrate foreign sequences of DNA in the genome of mouse somatic cells eliciting long-term expression in vivo. This technology holds great promise for human gene therapy as a nonviral technology to deliver therapeutic genes. SB also provides a means to study the effects of defined genetic elements, such as oncogenes, on somatic cells in mice. Here, we test the ability of the SB transposon system to facilitate somatic integration of a transposon containing an activated NRAS oncogene in mouse hepatocytes to elicit tumor formation. NRAS oncogene-driven tumors developed when such vectors were delivered to the livers of p19Arf-null or heterozygous mice. Delivery of the NRAS transposon cooperates with Arf loss to cause carcinomas of hepatocellular or biliary origin. These tumors allowed characterization of transposon integration and expression at the single-cell level, revealing robust NRAS expression and both transposase-mediated and random insertion of delivered vectors. Random integration and expression of the SB transposase plasmid was also observed in one instance. In addition, studies using effector loop mutants of activated NRAS provide evidence that mitogen-activated protein kinase activation alone cannot efficiently induce liver carcinomas. This system can be used to rapidly model tumors caused by defined genetic changes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16286660</pmid><doi>10.1073/pnas.0502974102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-11, Vol.102 (47), p.17059-17064
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_68822226
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection
subjects Animals
Biological Sciences
Cancer
Carcinoma - etiology
Carcinoma - genetics
Carcinoma - pathology
Cell lines
Cyclin-Dependent Kinase Inhibitor p16
Disease Models, Animal
DNA
DNA Transposable Elements
Gene therapy
Genetic transposition
Genetics
Heterozygote
Homozygote
Humans
Liver
Liver Neoplasms - etiology
Liver Neoplasms - genetics
Liver Neoplasms - pathology
Mice
Mice, Inbred C57BL
Mice, Knockout
Oncogenes
Plasmids
Rodents
Somatic cells
Spleen - pathology
Transposases - genetics
Transposases - metabolism
Transposons
Tumor cell line
Tumor Suppressor Protein p14ARF - genetics
Tumors
title Somatic Integration of an Oncogene-Harboring Sleeping Beauty Transposon Models Liver Tumor Development in the Mouse
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Somatic%20Integration%20of%20an%20Oncogene-Harboring%20Sleeping%20Beauty%20Transposon%20Models%20Liver%20Tumor%20Development%20in%20the%20Mouse&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Carlson,%20Corey%20M.&rft.date=2005-11-22&rft.volume=102&rft.issue=47&rft.spage=17059&rft.epage=17064&rft.pages=17059-17064&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0502974102&rft_dat=%3Cjstor_proqu%3E4152352%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-fad1ae298281ff0240fd849a04d0b3c24ff069bcea78369638f6268d4a86bf1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201366310&rft_id=info:pmid/16286660&rft_jstor_id=4152352&rfr_iscdi=true