Loading…

Hydrolytic Stability of Self-etch Adhesives Bonded to Dentin

Functional monomers chemically interact with hydroxyapatite that remains within submicron hybrid layers produced by mild self-etch adhesives. The functional monomer 10-MDP interacts most intensively with hydroxyapatite, and its calcium salt appeared most hydrolytically stable, as compared with 4-MET...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dental research 2005-12, Vol.84 (12), p.1160-1164
Main Authors: Inoue, S., Koshiro, K., Yoshida, Y., De Munck, J., Nagakane, K., Suzuki, K., Sano, H., Van Meerbeek, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-536e392e71911d03303d525b15f14bdbca9e0bdbfbe90fb4c9ae1978854b31763
cites cdi_FETCH-LOGICAL-c463t-536e392e71911d03303d525b15f14bdbca9e0bdbfbe90fb4c9ae1978854b31763
container_end_page 1164
container_issue 12
container_start_page 1160
container_title Journal of dental research
container_volume 84
creator Inoue, S.
Koshiro, K.
Yoshida, Y.
De Munck, J.
Nagakane, K.
Suzuki, K.
Sano, H.
Van Meerbeek, B.
description Functional monomers chemically interact with hydroxyapatite that remains within submicron hybrid layers produced by mild self-etch adhesives. The functional monomer 10-MDP interacts most intensively with hydroxyapatite, and its calcium salt appeared most hydrolytically stable, as compared with 4-MET and phenyl-P. We investigated the hypothesis that additional chemical interaction of self-etch adhesives improves bond stability. The micro-tensile bond strength (μTBS) of the 10-MDP-based adhesive did not decrease significantly after 100,000 cycles, but did after 50,000 and 30,000 cycles, respectively, for the 4-MET-based and the phenyl-P-based adhesives. Likewise, the interfacial ultrastructure was unchanged after 100,000 thermocycles for the 10-MDP-based adhesive, while that of both the 4-MET- and phenyl-P-based adhesives contained voids and less-defined collagen. The findings of this study support the concept that long-term durability of adhesive-dentin bonds depends on the chemical bonding potential of the functional monomer.
doi_str_mv 10.1177/154405910508401213
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68827817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_154405910508401213</sage_id><sourcerecordid>68827817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-536e392e71911d03303d525b15f14bdbca9e0bdbfbe90fb4c9ae1978854b31763</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRbK3-ARcSXLiLvXcemQy4qfUJBRfVdUgyNzYlzdRMIvTfm9JCQcHVgcN3zr0cxi4RbhG1HqOSEpRBUBBLQI7iiA23Zrh1j9kQgPMQhFQDdub9EgANj8UpG2AkQEqph-zuZWMbV23aMg_mbZqVVdluAlcEc6qKkNp8EUzsgnz5TT64d7UlG7QueKC6LetzdlKklaeLvY7Yx9Pj-_QlnL09v04nszCXkWhDJSIShpNGg2hBCBBWcZWhKlBmNstTQ9BrkZGBIpO5SQmNjmMlM4E6EiN2s-tdN-6rI98mq9LnVFVpTa7zSRTHXMeoe_D6F7h0XVP3vyUcjNRaIfQQ30F547xvqEjWTblKm02CkGyHTf4O24eu9s1dtiJ7iOyX7IHxDvDpJx3O_lP5A4LUfgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209477510</pqid></control><display><type>article</type><title>Hydrolytic Stability of Self-etch Adhesives Bonded to Dentin</title><source>Sage Journals Online</source><creator>Inoue, S. ; Koshiro, K. ; Yoshida, Y. ; De Munck, J. ; Nagakane, K. ; Suzuki, K. ; Sano, H. ; Van Meerbeek, B.</creator><creatorcontrib>Inoue, S. ; Koshiro, K. ; Yoshida, Y. ; De Munck, J. ; Nagakane, K. ; Suzuki, K. ; Sano, H. ; Van Meerbeek, B.</creatorcontrib><description>Functional monomers chemically interact with hydroxyapatite that remains within submicron hybrid layers produced by mild self-etch adhesives. The functional monomer 10-MDP interacts most intensively with hydroxyapatite, and its calcium salt appeared most hydrolytically stable, as compared with 4-MET and phenyl-P. We investigated the hypothesis that additional chemical interaction of self-etch adhesives improves bond stability. The micro-tensile bond strength (μTBS) of the 10-MDP-based adhesive did not decrease significantly after 100,000 cycles, but did after 50,000 and 30,000 cycles, respectively, for the 4-MET-based and the phenyl-P-based adhesives. Likewise, the interfacial ultrastructure was unchanged after 100,000 thermocycles for the 10-MDP-based adhesive, while that of both the 4-MET- and phenyl-P-based adhesives contained voids and less-defined collagen. The findings of this study support the concept that long-term durability of adhesive-dentin bonds depends on the chemical bonding potential of the functional monomer.</description><identifier>ISSN: 0022-0345</identifier><identifier>EISSN: 1544-0591</identifier><identifier>DOI: 10.1177/154405910508401213</identifier><identifier>PMID: 16304447</identifier><identifier>CODEN: JDREAF</identifier><language>eng</language><publisher>United States: SAGE Publications</publisher><subject>Acid Etching, Dental ; Dental Bonding ; Dentin - ultrastructure ; Dentin-Bonding Agents - chemistry ; Dentistry ; Durapatite - chemistry ; Humans ; Hydrolysis ; Methacrylates - chemistry ; Microscopy, Electron, Transmission ; Organophosphorus Compounds - chemistry ; Surface Properties ; Tensile Strength ; Tricarboxylic Acids - chemistry</subject><ispartof>Journal of dental research, 2005-12, Vol.84 (12), p.1160-1164</ispartof><rights>International and American Associations for Dental Research</rights><rights>Copyright American Association for Dental Research/American Academy of Implant Dentistry Dec 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-536e392e71911d03303d525b15f14bdbca9e0bdbfbe90fb4c9ae1978854b31763</citedby><cites>FETCH-LOGICAL-c463t-536e392e71911d03303d525b15f14bdbca9e0bdbfbe90fb4c9ae1978854b31763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16304447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inoue, S.</creatorcontrib><creatorcontrib>Koshiro, K.</creatorcontrib><creatorcontrib>Yoshida, Y.</creatorcontrib><creatorcontrib>De Munck, J.</creatorcontrib><creatorcontrib>Nagakane, K.</creatorcontrib><creatorcontrib>Suzuki, K.</creatorcontrib><creatorcontrib>Sano, H.</creatorcontrib><creatorcontrib>Van Meerbeek, B.</creatorcontrib><title>Hydrolytic Stability of Self-etch Adhesives Bonded to Dentin</title><title>Journal of dental research</title><addtitle>J Dent Res</addtitle><description>Functional monomers chemically interact with hydroxyapatite that remains within submicron hybrid layers produced by mild self-etch adhesives. The functional monomer 10-MDP interacts most intensively with hydroxyapatite, and its calcium salt appeared most hydrolytically stable, as compared with 4-MET and phenyl-P. We investigated the hypothesis that additional chemical interaction of self-etch adhesives improves bond stability. The micro-tensile bond strength (μTBS) of the 10-MDP-based adhesive did not decrease significantly after 100,000 cycles, but did after 50,000 and 30,000 cycles, respectively, for the 4-MET-based and the phenyl-P-based adhesives. Likewise, the interfacial ultrastructure was unchanged after 100,000 thermocycles for the 10-MDP-based adhesive, while that of both the 4-MET- and phenyl-P-based adhesives contained voids and less-defined collagen. The findings of this study support the concept that long-term durability of adhesive-dentin bonds depends on the chemical bonding potential of the functional monomer.</description><subject>Acid Etching, Dental</subject><subject>Dental Bonding</subject><subject>Dentin - ultrastructure</subject><subject>Dentin-Bonding Agents - chemistry</subject><subject>Dentistry</subject><subject>Durapatite - chemistry</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Methacrylates - chemistry</subject><subject>Microscopy, Electron, Transmission</subject><subject>Organophosphorus Compounds - chemistry</subject><subject>Surface Properties</subject><subject>Tensile Strength</subject><subject>Tricarboxylic Acids - chemistry</subject><issn>0022-0345</issn><issn>1544-0591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRbK3-ARcSXLiLvXcemQy4qfUJBRfVdUgyNzYlzdRMIvTfm9JCQcHVgcN3zr0cxi4RbhG1HqOSEpRBUBBLQI7iiA23Zrh1j9kQgPMQhFQDdub9EgANj8UpG2AkQEqph-zuZWMbV23aMg_mbZqVVdluAlcEc6qKkNp8EUzsgnz5TT64d7UlG7QueKC6LetzdlKklaeLvY7Yx9Pj-_QlnL09v04nszCXkWhDJSIShpNGg2hBCBBWcZWhKlBmNstTQ9BrkZGBIpO5SQmNjmMlM4E6EiN2s-tdN-6rI98mq9LnVFVpTa7zSRTHXMeoe_D6F7h0XVP3vyUcjNRaIfQQ30F547xvqEjWTblKm02CkGyHTf4O24eu9s1dtiJ7iOyX7IHxDvDpJx3O_lP5A4LUfgs</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Inoue, S.</creator><creator>Koshiro, K.</creator><creator>Yoshida, Y.</creator><creator>De Munck, J.</creator><creator>Nagakane, K.</creator><creator>Suzuki, K.</creator><creator>Sano, H.</creator><creator>Van Meerbeek, B.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope><scope>7X8</scope></search><sort><creationdate>200512</creationdate><title>Hydrolytic Stability of Self-etch Adhesives Bonded to Dentin</title><author>Inoue, S. ; Koshiro, K. ; Yoshida, Y. ; De Munck, J. ; Nagakane, K. ; Suzuki, K. ; Sano, H. ; Van Meerbeek, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-536e392e71911d03303d525b15f14bdbca9e0bdbfbe90fb4c9ae1978854b31763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acid Etching, Dental</topic><topic>Dental Bonding</topic><topic>Dentin - ultrastructure</topic><topic>Dentin-Bonding Agents - chemistry</topic><topic>Dentistry</topic><topic>Durapatite - chemistry</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Methacrylates - chemistry</topic><topic>Microscopy, Electron, Transmission</topic><topic>Organophosphorus Compounds - chemistry</topic><topic>Surface Properties</topic><topic>Tensile Strength</topic><topic>Tricarboxylic Acids - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inoue, S.</creatorcontrib><creatorcontrib>Koshiro, K.</creatorcontrib><creatorcontrib>Yoshida, Y.</creatorcontrib><creatorcontrib>De Munck, J.</creatorcontrib><creatorcontrib>Nagakane, K.</creatorcontrib><creatorcontrib>Suzuki, K.</creatorcontrib><creatorcontrib>Sano, H.</creatorcontrib><creatorcontrib>Van Meerbeek, B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career &amp; Technical Education Database</collection><collection>Nursing &amp; Allied Health Database</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of dental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inoue, S.</au><au>Koshiro, K.</au><au>Yoshida, Y.</au><au>De Munck, J.</au><au>Nagakane, K.</au><au>Suzuki, K.</au><au>Sano, H.</au><au>Van Meerbeek, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrolytic Stability of Self-etch Adhesives Bonded to Dentin</atitle><jtitle>Journal of dental research</jtitle><addtitle>J Dent Res</addtitle><date>2005-12</date><risdate>2005</risdate><volume>84</volume><issue>12</issue><spage>1160</spage><epage>1164</epage><pages>1160-1164</pages><issn>0022-0345</issn><eissn>1544-0591</eissn><coden>JDREAF</coden><abstract>Functional monomers chemically interact with hydroxyapatite that remains within submicron hybrid layers produced by mild self-etch adhesives. The functional monomer 10-MDP interacts most intensively with hydroxyapatite, and its calcium salt appeared most hydrolytically stable, as compared with 4-MET and phenyl-P. We investigated the hypothesis that additional chemical interaction of self-etch adhesives improves bond stability. The micro-tensile bond strength (μTBS) of the 10-MDP-based adhesive did not decrease significantly after 100,000 cycles, but did after 50,000 and 30,000 cycles, respectively, for the 4-MET-based and the phenyl-P-based adhesives. Likewise, the interfacial ultrastructure was unchanged after 100,000 thermocycles for the 10-MDP-based adhesive, while that of both the 4-MET- and phenyl-P-based adhesives contained voids and less-defined collagen. The findings of this study support the concept that long-term durability of adhesive-dentin bonds depends on the chemical bonding potential of the functional monomer.</abstract><cop>United States</cop><pub>SAGE Publications</pub><pmid>16304447</pmid><doi>10.1177/154405910508401213</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0345
ispartof Journal of dental research, 2005-12, Vol.84 (12), p.1160-1164
issn 0022-0345
1544-0591
language eng
recordid cdi_proquest_miscellaneous_68827817
source Sage Journals Online
subjects Acid Etching, Dental
Dental Bonding
Dentin - ultrastructure
Dentin-Bonding Agents - chemistry
Dentistry
Durapatite - chemistry
Humans
Hydrolysis
Methacrylates - chemistry
Microscopy, Electron, Transmission
Organophosphorus Compounds - chemistry
Surface Properties
Tensile Strength
Tricarboxylic Acids - chemistry
title Hydrolytic Stability of Self-etch Adhesives Bonded to Dentin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrolytic%20Stability%20of%20Self-etch%20Adhesives%20Bonded%20to%20Dentin&rft.jtitle=Journal%20of%20dental%20research&rft.au=Inoue,%20S.&rft.date=2005-12&rft.volume=84&rft.issue=12&rft.spage=1160&rft.epage=1164&rft.pages=1160-1164&rft.issn=0022-0345&rft.eissn=1544-0591&rft.coden=JDREAF&rft_id=info:doi/10.1177/154405910508401213&rft_dat=%3Cproquest_cross%3E68827817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-536e392e71911d03303d525b15f14bdbca9e0bdbfbe90fb4c9ae1978854b31763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=209477510&rft_id=info:pmid/16304447&rft_sage_id=10.1177_154405910508401213&rfr_iscdi=true