Loading…
A Biosynthetic Pathway for Anandamide
The endocannabinoid arachidonoyl ethanolamine (anandamide) is a lipid transmitter synthesized and released "on demand" by neurons in the brain. Anandamide is also generated by macrophages where its endotoxin (LPS)-induced synthesis has been implicated in the hypotension of septic shock and...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2006-09, Vol.103 (36), p.13345-13350 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c596t-fbc140a368c4069b8292c0dde92f17bfc76b18168ca76941f64e5b0b254acb533 |
---|---|
cites | cdi_FETCH-LOGICAL-c596t-fbc140a368c4069b8292c0dde92f17bfc76b18168ca76941f64e5b0b254acb533 |
container_end_page | 13350 |
container_issue | 36 |
container_start_page | 13345 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 103 |
creator | Liu, Jie Wang, Lei Harvey-White, Judith Osei-Hyiaman, Douglas Razdan, Raj Gong, Qian Chan, Andrew C. Zhou, Zhifeng Huang, Bill X. Kim, Hee-Yong Kunos, George |
description | The endocannabinoid arachidonoyl ethanolamine (anandamide) is a lipid transmitter synthesized and released "on demand" by neurons in the brain. Anandamide is also generated by macrophages where its endotoxin (LPS)-induced synthesis has been implicated in the hypotension of septic shock and advanced liver cirrhosis. Anandamide can be generated from its membrane precursor, N-arachidonoyl phosphatidylethanolamine (NAPE) through cleavage by a phospholipase D (NAPE-PLD). Here we document a biosynthetic pathway for anandamide in mouse brain and RAW264.7 macrophages that involves the phospholipase C (PLC)-catalyzed cleavage of NAPE to generate a lipid, phosphoanandamide, which is subsequently dephosphorylated by phosphatases, including PTPN22, previously described as a protein tyrosine phosphatase. Bacterial endotoxin (LPS)-induced synthesis of anandamide in macrophages is mediated exclusively by the PLC/phosphatase pathway, which is up-regulated by LPS, whereas NAPE-PLD is down-regulated by LPS and functions as a salvage pathway of anandamide synthesis when the PLC/phosphatase pathway is compromised. Both PTPN22 and endocannabinoids have been implicated in autoimmune diseases, suggesting that the PLC/phosphatase pathway of anandamide synthesis may be a pharmacotherapeutic target. |
doi_str_mv | 10.1073/pnas.0601832103 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68834487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30050789</jstor_id><sourcerecordid>30050789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-fbc140a368c4069b8292c0dde92f17bfc76b18168ca76941f64e5b0b254acb533</originalsourceid><addsrcrecordid>eNqN0c2LEzEYBvAgiltXz56UQVDwMLtv8ubzInQXv2BBD3oOmUzGTplOapLR7X_vlJatetFTDu_vfUjyEPKUwgUFhZfb0eULkEA1Mgp4jywoGFpLbuA-WQAwVWvO-Bl5lPMaAIzQ8JCcUWlQa60W5OWyuupj3o1lFUrvq8-urH66XdXFVC1HN7Zu07fhMXnQuSGHJ8fznHx99_bL9Yf65tP7j9fLm9oLI0vdNZ5ycCi15yBNo5lhHto2GNZR1XReyYZqOo-dkobTTvIgGmiY4M43AvGcvDnkbqdmE1ofxpLcYLep37i0s9H19s_J2K_st_jDUiEUajUHvDoGpPh9CrnYTZ99GAY3hjhlK7VGzv8DUoPMaLaHL_6C6zilcf4Fy4CiRuBsRpcH5FPMOYXu7soU7L4ouy_KnoqaN57__tKTPzYzg9dHsN88xaFFaSkiF7abhqGE2zLb6h92Js8OZJ1LTHcGAQQobfAXir-veA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201383042</pqid></control><display><type>article</type><title>A Biosynthetic Pathway for Anandamide</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Liu, Jie ; Wang, Lei ; Harvey-White, Judith ; Osei-Hyiaman, Douglas ; Razdan, Raj ; Gong, Qian ; Chan, Andrew C. ; Zhou, Zhifeng ; Huang, Bill X. ; Kim, Hee-Yong ; Kunos, George</creator><creatorcontrib>Liu, Jie ; Wang, Lei ; Harvey-White, Judith ; Osei-Hyiaman, Douglas ; Razdan, Raj ; Gong, Qian ; Chan, Andrew C. ; Zhou, Zhifeng ; Huang, Bill X. ; Kim, Hee-Yong ; Kunos, George</creatorcontrib><description>The endocannabinoid arachidonoyl ethanolamine (anandamide) is a lipid transmitter synthesized and released "on demand" by neurons in the brain. Anandamide is also generated by macrophages where its endotoxin (LPS)-induced synthesis has been implicated in the hypotension of septic shock and advanced liver cirrhosis. Anandamide can be generated from its membrane precursor, N-arachidonoyl phosphatidylethanolamine (NAPE) through cleavage by a phospholipase D (NAPE-PLD). Here we document a biosynthetic pathway for anandamide in mouse brain and RAW264.7 macrophages that involves the phospholipase C (PLC)-catalyzed cleavage of NAPE to generate a lipid, phosphoanandamide, which is subsequently dephosphorylated by phosphatases, including PTPN22, previously described as a protein tyrosine phosphatase. Bacterial endotoxin (LPS)-induced synthesis of anandamide in macrophages is mediated exclusively by the PLC/phosphatase pathway, which is up-regulated by LPS, whereas NAPE-PLD is down-regulated by LPS and functions as a salvage pathway of anandamide synthesis when the PLC/phosphatase pathway is compromised. Both PTPN22 and endocannabinoids have been implicated in autoimmune diseases, suggesting that the PLC/phosphatase pathway of anandamide synthesis may be a pharmacotherapeutic target.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0601832103</identifier><identifier>PMID: 16938887</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Arachidonic Acids - biosynthesis ; Autoimmune diseases ; Biological Sciences ; Brain ; Brain - metabolism ; Cannabinoids - biosynthesis ; Cell Line ; Cell lines ; Complementary DNA ; DNA, Complementary ; Endocannabinoids ; Enzyme Inhibitors - pharmacology ; Enzymes ; Immunohistochemistry ; In Vitro Techniques ; Kinetics ; Lipids ; Lipopolysaccharides - pharmacology ; Macrophages ; Macrophages - drug effects ; Macrophages - metabolism ; Messenger RNA ; Mice ; Mice, Knockout ; Neurons ; Phosphatases ; Phosphatidylethanolamines - metabolism ; Plasmids ; Polymerase chain reaction ; Polyunsaturated Alkamides ; Protein Tyrosine Phosphatase, Non-Receptor Type 22 ; Protein Tyrosine Phosphatases - genetics ; Protein Tyrosine Phosphatases - metabolism ; Recombinant Proteins - metabolism ; RNA, Messenger - metabolism ; Rodents ; Small interfering RNA ; Solvents ; Transfection ; Type C Phospholipases - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-09, Vol.103 (36), p.13345-13350</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 5, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-fbc140a368c4069b8292c0dde92f17bfc76b18168ca76941f64e5b0b254acb533</citedby><cites>FETCH-LOGICAL-c596t-fbc140a368c4069b8292c0dde92f17bfc76b18168ca76941f64e5b0b254acb533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30050789$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30050789$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16938887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Harvey-White, Judith</creatorcontrib><creatorcontrib>Osei-Hyiaman, Douglas</creatorcontrib><creatorcontrib>Razdan, Raj</creatorcontrib><creatorcontrib>Gong, Qian</creatorcontrib><creatorcontrib>Chan, Andrew C.</creatorcontrib><creatorcontrib>Zhou, Zhifeng</creatorcontrib><creatorcontrib>Huang, Bill X.</creatorcontrib><creatorcontrib>Kim, Hee-Yong</creatorcontrib><creatorcontrib>Kunos, George</creatorcontrib><title>A Biosynthetic Pathway for Anandamide</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The endocannabinoid arachidonoyl ethanolamine (anandamide) is a lipid transmitter synthesized and released "on demand" by neurons in the brain. Anandamide is also generated by macrophages where its endotoxin (LPS)-induced synthesis has been implicated in the hypotension of septic shock and advanced liver cirrhosis. Anandamide can be generated from its membrane precursor, N-arachidonoyl phosphatidylethanolamine (NAPE) through cleavage by a phospholipase D (NAPE-PLD). Here we document a biosynthetic pathway for anandamide in mouse brain and RAW264.7 macrophages that involves the phospholipase C (PLC)-catalyzed cleavage of NAPE to generate a lipid, phosphoanandamide, which is subsequently dephosphorylated by phosphatases, including PTPN22, previously described as a protein tyrosine phosphatase. Bacterial endotoxin (LPS)-induced synthesis of anandamide in macrophages is mediated exclusively by the PLC/phosphatase pathway, which is up-regulated by LPS, whereas NAPE-PLD is down-regulated by LPS and functions as a salvage pathway of anandamide synthesis when the PLC/phosphatase pathway is compromised. Both PTPN22 and endocannabinoids have been implicated in autoimmune diseases, suggesting that the PLC/phosphatase pathway of anandamide synthesis may be a pharmacotherapeutic target.</description><subject>Animals</subject><subject>Arachidonic Acids - biosynthesis</subject><subject>Autoimmune diseases</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Cannabinoids - biosynthesis</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Complementary DNA</subject><subject>DNA, Complementary</subject><subject>Endocannabinoids</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes</subject><subject>Immunohistochemistry</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neurons</subject><subject>Phosphatases</subject><subject>Phosphatidylethanolamines - metabolism</subject><subject>Plasmids</subject><subject>Polymerase chain reaction</subject><subject>Polyunsaturated Alkamides</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 22</subject><subject>Protein Tyrosine Phosphatases - genetics</subject><subject>Protein Tyrosine Phosphatases - metabolism</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Small interfering RNA</subject><subject>Solvents</subject><subject>Transfection</subject><subject>Type C Phospholipases - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqN0c2LEzEYBvAgiltXz56UQVDwMLtv8ubzInQXv2BBD3oOmUzGTplOapLR7X_vlJatetFTDu_vfUjyEPKUwgUFhZfb0eULkEA1Mgp4jywoGFpLbuA-WQAwVWvO-Bl5lPMaAIzQ8JCcUWlQa60W5OWyuupj3o1lFUrvq8-urH66XdXFVC1HN7Zu07fhMXnQuSGHJ8fznHx99_bL9Yf65tP7j9fLm9oLI0vdNZ5ycCi15yBNo5lhHto2GNZR1XReyYZqOo-dkobTTvIgGmiY4M43AvGcvDnkbqdmE1ofxpLcYLep37i0s9H19s_J2K_st_jDUiEUajUHvDoGpPh9CrnYTZ99GAY3hjhlK7VGzv8DUoPMaLaHL_6C6zilcf4Fy4CiRuBsRpcH5FPMOYXu7soU7L4ouy_KnoqaN57__tKTPzYzg9dHsN88xaFFaSkiF7abhqGE2zLb6h92Js8OZJ1LTHcGAQQobfAXir-veA</recordid><startdate>20060905</startdate><enddate>20060905</enddate><creator>Liu, Jie</creator><creator>Wang, Lei</creator><creator>Harvey-White, Judith</creator><creator>Osei-Hyiaman, Douglas</creator><creator>Razdan, Raj</creator><creator>Gong, Qian</creator><creator>Chan, Andrew C.</creator><creator>Zhou, Zhifeng</creator><creator>Huang, Bill X.</creator><creator>Kim, Hee-Yong</creator><creator>Kunos, George</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060905</creationdate><title>A Biosynthetic Pathway for Anandamide</title><author>Liu, Jie ; Wang, Lei ; Harvey-White, Judith ; Osei-Hyiaman, Douglas ; Razdan, Raj ; Gong, Qian ; Chan, Andrew C. ; Zhou, Zhifeng ; Huang, Bill X. ; Kim, Hee-Yong ; Kunos, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-fbc140a368c4069b8292c0dde92f17bfc76b18168ca76941f64e5b0b254acb533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Arachidonic Acids - biosynthesis</topic><topic>Autoimmune diseases</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Cannabinoids - biosynthesis</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Complementary DNA</topic><topic>DNA, Complementary</topic><topic>Endocannabinoids</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes</topic><topic>Immunohistochemistry</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neurons</topic><topic>Phosphatases</topic><topic>Phosphatidylethanolamines - metabolism</topic><topic>Plasmids</topic><topic>Polymerase chain reaction</topic><topic>Polyunsaturated Alkamides</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 22</topic><topic>Protein Tyrosine Phosphatases - genetics</topic><topic>Protein Tyrosine Phosphatases - metabolism</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Small interfering RNA</topic><topic>Solvents</topic><topic>Transfection</topic><topic>Type C Phospholipases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Harvey-White, Judith</creatorcontrib><creatorcontrib>Osei-Hyiaman, Douglas</creatorcontrib><creatorcontrib>Razdan, Raj</creatorcontrib><creatorcontrib>Gong, Qian</creatorcontrib><creatorcontrib>Chan, Andrew C.</creatorcontrib><creatorcontrib>Zhou, Zhifeng</creatorcontrib><creatorcontrib>Huang, Bill X.</creatorcontrib><creatorcontrib>Kim, Hee-Yong</creatorcontrib><creatorcontrib>Kunos, George</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jie</au><au>Wang, Lei</au><au>Harvey-White, Judith</au><au>Osei-Hyiaman, Douglas</au><au>Razdan, Raj</au><au>Gong, Qian</au><au>Chan, Andrew C.</au><au>Zhou, Zhifeng</au><au>Huang, Bill X.</au><au>Kim, Hee-Yong</au><au>Kunos, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Biosynthetic Pathway for Anandamide</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-09-05</date><risdate>2006</risdate><volume>103</volume><issue>36</issue><spage>13345</spage><epage>13350</epage><pages>13345-13350</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The endocannabinoid arachidonoyl ethanolamine (anandamide) is a lipid transmitter synthesized and released "on demand" by neurons in the brain. Anandamide is also generated by macrophages where its endotoxin (LPS)-induced synthesis has been implicated in the hypotension of septic shock and advanced liver cirrhosis. Anandamide can be generated from its membrane precursor, N-arachidonoyl phosphatidylethanolamine (NAPE) through cleavage by a phospholipase D (NAPE-PLD). Here we document a biosynthetic pathway for anandamide in mouse brain and RAW264.7 macrophages that involves the phospholipase C (PLC)-catalyzed cleavage of NAPE to generate a lipid, phosphoanandamide, which is subsequently dephosphorylated by phosphatases, including PTPN22, previously described as a protein tyrosine phosphatase. Bacterial endotoxin (LPS)-induced synthesis of anandamide in macrophages is mediated exclusively by the PLC/phosphatase pathway, which is up-regulated by LPS, whereas NAPE-PLD is down-regulated by LPS and functions as a salvage pathway of anandamide synthesis when the PLC/phosphatase pathway is compromised. Both PTPN22 and endocannabinoids have been implicated in autoimmune diseases, suggesting that the PLC/phosphatase pathway of anandamide synthesis may be a pharmacotherapeutic target.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16938887</pmid><doi>10.1073/pnas.0601832103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2006-09, Vol.103 (36), p.13345-13350 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_68834487 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Animals Arachidonic Acids - biosynthesis Autoimmune diseases Biological Sciences Brain Brain - metabolism Cannabinoids - biosynthesis Cell Line Cell lines Complementary DNA DNA, Complementary Endocannabinoids Enzyme Inhibitors - pharmacology Enzymes Immunohistochemistry In Vitro Techniques Kinetics Lipids Lipopolysaccharides - pharmacology Macrophages Macrophages - drug effects Macrophages - metabolism Messenger RNA Mice Mice, Knockout Neurons Phosphatases Phosphatidylethanolamines - metabolism Plasmids Polymerase chain reaction Polyunsaturated Alkamides Protein Tyrosine Phosphatase, Non-Receptor Type 22 Protein Tyrosine Phosphatases - genetics Protein Tyrosine Phosphatases - metabolism Recombinant Proteins - metabolism RNA, Messenger - metabolism Rodents Small interfering RNA Solvents Transfection Type C Phospholipases - metabolism |
title | A Biosynthetic Pathway for Anandamide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Biosynthetic%20Pathway%20for%20Anandamide&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Jie&rft.date=2006-09-05&rft.volume=103&rft.issue=36&rft.spage=13345&rft.epage=13350&rft.pages=13345-13350&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0601832103&rft_dat=%3Cjstor_proqu%3E30050789%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c596t-fbc140a368c4069b8292c0dde92f17bfc76b18168ca76941f64e5b0b254acb533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201383042&rft_id=info:pmid/16938887&rft_jstor_id=30050789&rfr_iscdi=true |