Loading…

The Roles of Two Clip Domain Serine Proteases in Innate Immune Responses of the Malaria Vector Anopheles gambiae

The malaria vector Anopheles gambiae is capable of multiple immune responses against Plasmodium ookinetes. Accumulating evidence in several insect species suggests the involvement of serine protease cascades in the initiation and coordination of immune responses. We report molecular and reverse gene...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2005-12, Vol.280 (48), p.40161-40168
Main Authors: Volz, Jennifer, Osta, Mike A., Kafatos, Fotis C., Müller, Hans-Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The malaria vector Anopheles gambiae is capable of multiple immune responses against Plasmodium ookinetes. Accumulating evidence in several insect species suggests the involvement of serine protease cascades in the initiation and coordination of immune responses. We report molecular and reverse genetic characterization of two mosquito clip domain serine proteases, CLIPB14 and CLIPB15, which share structural similarity to proteases involved in prophenoloxidase activation in other insects. Both CLIPs are expressed in mosquito hemocytes and are transcriptionally induced by bacterial and Plasmodium challenges. Functional studies applying RNA interference revealed that both CLIPs are involved in the killing of Plasmodium ookinetes in Anopheles. Studies on parasite melanization demonstrated an additional role for CLIPB14 in the prophenoloxidase cascade. We further report that both CLIPs participate in defense toward Gram-negative bacteria. Our findings strongly suggest that clip domain serine proteases serve multiple functions and play distinctive roles in several immune pathways of A. gambiae.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M506191200