Loading…

Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations

In the last decade, ab initio simulations and especially Car–Parrinello molecular dynamics have significantly contributed to the improvement of our understanding of both the physical and chemical properties of water, ice, and hydrogen‐bonded systems in general. At the heart of this family of in sili...

Full description

Saved in:
Bibliographic Details
Published in:Chemphyschem 2006-09, Vol.7 (9), p.1848-1870
Main Author: Marx, Dominik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4778-ad94253c8c97a8e2ecdcc75c26d0fff49279832a4bb76e0f0a69fb770d550ab83
cites cdi_FETCH-LOGICAL-c4778-ad94253c8c97a8e2ecdcc75c26d0fff49279832a4bb76e0f0a69fb770d550ab83
container_end_page 1870
container_issue 9
container_start_page 1848
container_title Chemphyschem
container_volume 7
creator Marx, Dominik
description In the last decade, ab initio simulations and especially Car–Parrinello molecular dynamics have significantly contributed to the improvement of our understanding of both the physical and chemical properties of water, ice, and hydrogen‐bonded systems in general. At the heart of this family of in silico techniques lies the crucial idea of computing the many‐body interactions by solving the electronic structure problem “on the fly” as the simulation proceeds, which circumvents the need for pre‐parameterized potential models. In particular, the field of proton transfer in hydrogen‐bonded networks greatly benefits from these technical advances. Here, several systems of seemingly quite different nature and of increasing complexity, such as Grotthuss diffusion in water, excited‐state proton‐transfer in solution, phase transitions in ice, and protonated water networks in the membrane protein bacteriorhodopsin, are discussed in the realms of a unifying viewpoint. Ubiquitous proton transfer reactions in hydrogen‐bonded networks are at the heart of a wealth of phenomena that connect chemistry to both physics and biology at the molecular level. Finite‐temperature ab initio or Car–Parrinello simulations play a vital role in helping to understand these phenomena. In this Review, a selection of such studies is discussed.
doi_str_mv 10.1002/cphc.200600128
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68837960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68837960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4778-ad94253c8c97a8e2ecdcc75c26d0fff49279832a4bb76e0f0a69fb770d550ab83</originalsourceid><addsrcrecordid>eNqFkEtv1DAURiMEog_YskTZwC7DtZ34wa4a0Wmlqh2VQRUry3FsxpDH1Ddp6b_H1UQtu658bZ_vs3Wy7AOBBQGgX-xuaxcUgAMQKl9lh6RkqhC8JK_nuaSsOsiOEH8DgARB3mYHhCuqqoodZtfrOIxDn2-i6dG7mKeu_KczEXPjx7S_S5erxIzbCfFrft5j-LUdMfdx6PKTOh2EMQz599BNrUlTj--yN9606N7P63H24_TbZnlWXFytzpcnF4UthZCFaVRJK2alVcJIR51trBWVpbwB732pqFCSUVPWteAOPBiufC0ENFUFppbsOPu8793F4XZyOOouoHVta3o3TKi5lEwoDglc7EEbB8TovN7F0Jn4oAnoR4v60aJ-spgCH-fmqe5c84zP2hLwaQYMWtP6JM8GfOYkKAGEJ07tufvQuocXntXL9dny_08U-2zA0f19ypr4R3PBRKVvLlcaNuRyTa6ZvmH_AOKzmjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68837960</pqid></control><display><type>article</type><title>Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Marx, Dominik</creator><creatorcontrib>Marx, Dominik</creatorcontrib><description>In the last decade, ab initio simulations and especially Car–Parrinello molecular dynamics have significantly contributed to the improvement of our understanding of both the physical and chemical properties of water, ice, and hydrogen‐bonded systems in general. At the heart of this family of in silico techniques lies the crucial idea of computing the many‐body interactions by solving the electronic structure problem “on the fly” as the simulation proceeds, which circumvents the need for pre‐parameterized potential models. In particular, the field of proton transfer in hydrogen‐bonded networks greatly benefits from these technical advances. Here, several systems of seemingly quite different nature and of increasing complexity, such as Grotthuss diffusion in water, excited‐state proton‐transfer in solution, phase transitions in ice, and protonated water networks in the membrane protein bacteriorhodopsin, are discussed in the realms of a unifying viewpoint. Ubiquitous proton transfer reactions in hydrogen‐bonded networks are at the heart of a wealth of phenomena that connect chemistry to both physics and biology at the molecular level. Finite‐temperature ab initio or Car–Parrinello simulations play a vital role in helping to understand these phenomena. In this Review, a selection of such studies is discussed.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.200600128</identifier><identifier>PMID: 16929553</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Ab initio calculations ; Atomic and molecular physics ; Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) ; Electronic structure of atoms, molecules and their ions: theory ; Exact sciences and technology ; hydrogen bonds ; isotope effects ; molecular dynamics ; Molecular dynamics and other numerical methods ; Physics ; proton transport</subject><ispartof>Chemphyschem, 2006-09, Vol.7 (9), p.1848-1870</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4778-ad94253c8c97a8e2ecdcc75c26d0fff49279832a4bb76e0f0a69fb770d550ab83</citedby><cites>FETCH-LOGICAL-c4778-ad94253c8c97a8e2ecdcc75c26d0fff49279832a4bb76e0f0a69fb770d550ab83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18097016$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16929553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marx, Dominik</creatorcontrib><title>Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>In the last decade, ab initio simulations and especially Car–Parrinello molecular dynamics have significantly contributed to the improvement of our understanding of both the physical and chemical properties of water, ice, and hydrogen‐bonded systems in general. At the heart of this family of in silico techniques lies the crucial idea of computing the many‐body interactions by solving the electronic structure problem “on the fly” as the simulation proceeds, which circumvents the need for pre‐parameterized potential models. In particular, the field of proton transfer in hydrogen‐bonded networks greatly benefits from these technical advances. Here, several systems of seemingly quite different nature and of increasing complexity, such as Grotthuss diffusion in water, excited‐state proton‐transfer in solution, phase transitions in ice, and protonated water networks in the membrane protein bacteriorhodopsin, are discussed in the realms of a unifying viewpoint. Ubiquitous proton transfer reactions in hydrogen‐bonded networks are at the heart of a wealth of phenomena that connect chemistry to both physics and biology at the molecular level. Finite‐temperature ab initio or Car–Parrinello simulations play a vital role in helping to understand these phenomena. In this Review, a selection of such studies is discussed.</description><subject>Ab initio calculations</subject><subject>Atomic and molecular physics</subject><subject>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</subject><subject>Electronic structure of atoms, molecules and their ions: theory</subject><subject>Exact sciences and technology</subject><subject>hydrogen bonds</subject><subject>isotope effects</subject><subject>molecular dynamics</subject><subject>Molecular dynamics and other numerical methods</subject><subject>Physics</subject><subject>proton transport</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkEtv1DAURiMEog_YskTZwC7DtZ34wa4a0Wmlqh2VQRUry3FsxpDH1Ddp6b_H1UQtu658bZ_vs3Wy7AOBBQGgX-xuaxcUgAMQKl9lh6RkqhC8JK_nuaSsOsiOEH8DgARB3mYHhCuqqoodZtfrOIxDn2-i6dG7mKeu_KczEXPjx7S_S5erxIzbCfFrft5j-LUdMfdx6PKTOh2EMQz599BNrUlTj--yN9606N7P63H24_TbZnlWXFytzpcnF4UthZCFaVRJK2alVcJIR51trBWVpbwB732pqFCSUVPWteAOPBiufC0ENFUFppbsOPu8793F4XZyOOouoHVta3o3TKi5lEwoDglc7EEbB8TovN7F0Jn4oAnoR4v60aJ-spgCH-fmqe5c84zP2hLwaQYMWtP6JM8GfOYkKAGEJ07tufvQuocXntXL9dny_08U-2zA0f19ypr4R3PBRKVvLlcaNuRyTa6ZvmH_AOKzmjg</recordid><startdate>20060911</startdate><enddate>20060911</enddate><creator>Marx, Dominik</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060911</creationdate><title>Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations</title><author>Marx, Dominik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4778-ad94253c8c97a8e2ecdcc75c26d0fff49279832a4bb76e0f0a69fb770d550ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Ab initio calculations</topic><topic>Atomic and molecular physics</topic><topic>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</topic><topic>Electronic structure of atoms, molecules and their ions: theory</topic><topic>Exact sciences and technology</topic><topic>hydrogen bonds</topic><topic>isotope effects</topic><topic>molecular dynamics</topic><topic>Molecular dynamics and other numerical methods</topic><topic>Physics</topic><topic>proton transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marx, Dominik</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marx, Dominik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2006-09-11</date><risdate>2006</risdate><volume>7</volume><issue>9</issue><spage>1848</spage><epage>1870</epage><pages>1848-1870</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>In the last decade, ab initio simulations and especially Car–Parrinello molecular dynamics have significantly contributed to the improvement of our understanding of both the physical and chemical properties of water, ice, and hydrogen‐bonded systems in general. At the heart of this family of in silico techniques lies the crucial idea of computing the many‐body interactions by solving the electronic structure problem “on the fly” as the simulation proceeds, which circumvents the need for pre‐parameterized potential models. In particular, the field of proton transfer in hydrogen‐bonded networks greatly benefits from these technical advances. Here, several systems of seemingly quite different nature and of increasing complexity, such as Grotthuss diffusion in water, excited‐state proton‐transfer in solution, phase transitions in ice, and protonated water networks in the membrane protein bacteriorhodopsin, are discussed in the realms of a unifying viewpoint. Ubiquitous proton transfer reactions in hydrogen‐bonded networks are at the heart of a wealth of phenomena that connect chemistry to both physics and biology at the molecular level. Finite‐temperature ab initio or Car–Parrinello simulations play a vital role in helping to understand these phenomena. In this Review, a selection of such studies is discussed.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>16929553</pmid><doi>10.1002/cphc.200600128</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2006-09, Vol.7 (9), p.1848-1870
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_68837960
source Wiley-Blackwell Read & Publish Collection
subjects Ab initio calculations
Atomic and molecular physics
Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)
Electronic structure of atoms, molecules and their ions: theory
Exact sciences and technology
hydrogen bonds
isotope effects
molecular dynamics
Molecular dynamics and other numerical methods
Physics
proton transport
title Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20Transfer%20200%20Years%20after%20von%20Grotthuss:%20Insights%20from%20Ab%20Initio%20Simulations&rft.jtitle=Chemphyschem&rft.au=Marx,%20Dominik&rft.date=2006-09-11&rft.volume=7&rft.issue=9&rft.spage=1848&rft.epage=1870&rft.pages=1848-1870&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.200600128&rft_dat=%3Cproquest_cross%3E68837960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4778-ad94253c8c97a8e2ecdcc75c26d0fff49279832a4bb76e0f0a69fb770d550ab83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68837960&rft_id=info:pmid/16929553&rfr_iscdi=true