Loading…
Framework models of ion permeation through membrane channels and the generalized King-Altman method
A modern approach to studying the detailed dynamics of biomolecules is to simulate them on computers. Framework models have been developed to incorporate information from these simulations in order to calculate properties of the biomolecules on much longer time scales than can be achieved by the sim...
Saved in:
Published in: | Bulletin of mathematical biology 2006-10, Vol.68 (7), p.1429-1460 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3 |
container_end_page | 1460 |
container_issue | 7 |
container_start_page | 1429 |
container_title | Bulletin of mathematical biology |
container_volume | 68 |
creator | Mapes, Eric J Schumaker, Mark F |
description | A modern approach to studying the detailed dynamics of biomolecules is to simulate them on computers. Framework models have been developed to incorporate information from these simulations in order to calculate properties of the biomolecules on much longer time scales than can be achieved by the simulations. They also provide a simple way to think about the simulated dynamics. This article develops a method for the solution of framework models, which generalizes the King-Altman method of enzyme kinetics. The generalized method is used to construct solutions of two framework models which have been introduced previously, the single-particle and Grotthuss (proton conduction) models. The solution of the Grotthuss model is greatly simplified in comparison with direct integration. In addition, a new framework model is introduced, generalizing the shaking stack model of ion conduction through the potassium channel. |
doi_str_mv | 10.1007/s11538-005-9016-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68844632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094912921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVpadwkP6CXsuSQmxp9rL6OISRtaSCX5Cy00tjedCW50i4h_fWRsSHQ0wzM8w4zD0JfKflOCVFXlVLBNSZEYEOoxPQDWlHBGDaSsI9oRYhhWLOenKAvtT6TljHcfEYnVGqpteAr5O-Ki_CSy58u5gBT7fK6G3PqdlAiuHnfztuSl822ixCH4hJ0futS2rMuhTaFbgMJipvGfxC632Pa4Otpji61xLzN4Qx9WrupwvmxnqKnu9vHm5_4_uHHr5vre-w5kzNm0K-VZ5p6riXVgVFtlOuF4WJQVNDAlDchaB_UwLgORA0Ag_RSONFTBfwUXR727kr-u0CdbRyrh2lqN-el2vZy30vOGnjxH_icl5LabVbxnnFiZN8geoB8ybUWWNtdGaMrr5YSu9dvD_pt02_3-i1tmW_HxcsQIbwnjr75GzZtgEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734230964</pqid></control><display><type>article</type><title>Framework models of ion permeation through membrane channels and the generalized King-Altman method</title><source>Springer Link</source><creator>Mapes, Eric J ; Schumaker, Mark F</creator><creatorcontrib>Mapes, Eric J ; Schumaker, Mark F</creatorcontrib><description>A modern approach to studying the detailed dynamics of biomolecules is to simulate them on computers. Framework models have been developed to incorporate information from these simulations in order to calculate properties of the biomolecules on much longer time scales than can be achieved by the simulations. They also provide a simple way to think about the simulated dynamics. This article develops a method for the solution of framework models, which generalizes the King-Altman method of enzyme kinetics. The generalized method is used to construct solutions of two framework models which have been introduced previously, the single-particle and Grotthuss (proton conduction) models. The solution of the Grotthuss model is greatly simplified in comparison with direct integration. In addition, a new framework model is introduced, generalizing the shaking stack model of ion conduction through the potassium channel.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-005-9016-1</identifier><identifier>PMID: 16868853</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Algorithms ; Bacterial Proteins - chemistry ; Diffusion ; Enzyme kinetics ; Gramicidin - chemistry ; Ion Channels - chemistry ; Ions - chemistry ; Markov Chains ; Models, Chemical ; Potassium - chemistry ; Potassium Channels - chemistry ; Protons ; Sodium - chemistry ; Stochastic Processes ; Studies ; Water - chemistry</subject><ispartof>Bulletin of mathematical biology, 2006-10, Vol.68 (7), p.1429-1460</ispartof><rights>Springer Science+Business Media, Inc. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3</citedby><cites>FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16868853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mapes, Eric J</creatorcontrib><creatorcontrib>Schumaker, Mark F</creatorcontrib><title>Framework models of ion permeation through membrane channels and the generalized King-Altman method</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><description>A modern approach to studying the detailed dynamics of biomolecules is to simulate them on computers. Framework models have been developed to incorporate information from these simulations in order to calculate properties of the biomolecules on much longer time scales than can be achieved by the simulations. They also provide a simple way to think about the simulated dynamics. This article develops a method for the solution of framework models, which generalizes the King-Altman method of enzyme kinetics. The generalized method is used to construct solutions of two framework models which have been introduced previously, the single-particle and Grotthuss (proton conduction) models. The solution of the Grotthuss model is greatly simplified in comparison with direct integration. In addition, a new framework model is introduced, generalizing the shaking stack model of ion conduction through the potassium channel.</description><subject>Algorithms</subject><subject>Bacterial Proteins - chemistry</subject><subject>Diffusion</subject><subject>Enzyme kinetics</subject><subject>Gramicidin - chemistry</subject><subject>Ion Channels - chemistry</subject><subject>Ions - chemistry</subject><subject>Markov Chains</subject><subject>Models, Chemical</subject><subject>Potassium - chemistry</subject><subject>Potassium Channels - chemistry</subject><subject>Protons</subject><subject>Sodium - chemistry</subject><subject>Stochastic Processes</subject><subject>Studies</subject><subject>Water - chemistry</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkE1rGzEQhkVpadwkP6CXsuSQmxp9rL6OISRtaSCX5Cy00tjedCW50i4h_fWRsSHQ0wzM8w4zD0JfKflOCVFXlVLBNSZEYEOoxPQDWlHBGDaSsI9oRYhhWLOenKAvtT6TljHcfEYnVGqpteAr5O-Ki_CSy58u5gBT7fK6G3PqdlAiuHnfztuSl822ixCH4hJ0futS2rMuhTaFbgMJipvGfxC632Pa4Otpji61xLzN4Qx9WrupwvmxnqKnu9vHm5_4_uHHr5vre-w5kzNm0K-VZ5p6riXVgVFtlOuF4WJQVNDAlDchaB_UwLgORA0Ag_RSONFTBfwUXR727kr-u0CdbRyrh2lqN-el2vZy30vOGnjxH_icl5LabVbxnnFiZN8geoB8ybUWWNtdGaMrr5YSu9dvD_pt02_3-i1tmW_HxcsQIbwnjr75GzZtgEg</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Mapes, Eric J</creator><creator>Schumaker, Mark F</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20061001</creationdate><title>Framework models of ion permeation through membrane channels and the generalized King-Altman method</title><author>Mapes, Eric J ; Schumaker, Mark F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Bacterial Proteins - chemistry</topic><topic>Diffusion</topic><topic>Enzyme kinetics</topic><topic>Gramicidin - chemistry</topic><topic>Ion Channels - chemistry</topic><topic>Ions - chemistry</topic><topic>Markov Chains</topic><topic>Models, Chemical</topic><topic>Potassium - chemistry</topic><topic>Potassium Channels - chemistry</topic><topic>Protons</topic><topic>Sodium - chemistry</topic><topic>Stochastic Processes</topic><topic>Studies</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mapes, Eric J</creatorcontrib><creatorcontrib>Schumaker, Mark F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mapes, Eric J</au><au>Schumaker, Mark F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Framework models of ion permeation through membrane channels and the generalized King-Altman method</atitle><jtitle>Bulletin of mathematical biology</jtitle><addtitle>Bull Math Biol</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>68</volume><issue>7</issue><spage>1429</spage><epage>1460</epage><pages>1429-1460</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>A modern approach to studying the detailed dynamics of biomolecules is to simulate them on computers. Framework models have been developed to incorporate information from these simulations in order to calculate properties of the biomolecules on much longer time scales than can be achieved by the simulations. They also provide a simple way to think about the simulated dynamics. This article develops a method for the solution of framework models, which generalizes the King-Altman method of enzyme kinetics. The generalized method is used to construct solutions of two framework models which have been introduced previously, the single-particle and Grotthuss (proton conduction) models. The solution of the Grotthuss model is greatly simplified in comparison with direct integration. In addition, a new framework model is introduced, generalizing the shaking stack model of ion conduction through the potassium channel.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>16868853</pmid><doi>10.1007/s11538-005-9016-1</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2006-10, Vol.68 (7), p.1429-1460 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_68844632 |
source | Springer Link |
subjects | Algorithms Bacterial Proteins - chemistry Diffusion Enzyme kinetics Gramicidin - chemistry Ion Channels - chemistry Ions - chemistry Markov Chains Models, Chemical Potassium - chemistry Potassium Channels - chemistry Protons Sodium - chemistry Stochastic Processes Studies Water - chemistry |
title | Framework models of ion permeation through membrane channels and the generalized King-Altman method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Framework%20models%20of%20ion%20permeation%20through%20membrane%20channels%20and%20the%20generalized%20King-Altman%20method&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Mapes,%20Eric%20J&rft.date=2006-10-01&rft.volume=68&rft.issue=7&rft.spage=1429&rft.epage=1460&rft.pages=1429-1460&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-005-9016-1&rft_dat=%3Cproquest_cross%3E2094912921%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734230964&rft_id=info:pmid/16868853&rfr_iscdi=true |