Loading…

Framework models of ion permeation through membrane channels and the generalized King-Altman method

A modern approach to studying the detailed dynamics of biomolecules is to simulate them on computers. Framework models have been developed to incorporate information from these simulations in order to calculate properties of the biomolecules on much longer time scales than can be achieved by the sim...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of mathematical biology 2006-10, Vol.68 (7), p.1429-1460
Main Authors: Mapes, Eric J, Schumaker, Mark F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3
cites cdi_FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3
container_end_page 1460
container_issue 7
container_start_page 1429
container_title Bulletin of mathematical biology
container_volume 68
creator Mapes, Eric J
Schumaker, Mark F
description A modern approach to studying the detailed dynamics of biomolecules is to simulate them on computers. Framework models have been developed to incorporate information from these simulations in order to calculate properties of the biomolecules on much longer time scales than can be achieved by the simulations. They also provide a simple way to think about the simulated dynamics. This article develops a method for the solution of framework models, which generalizes the King-Altman method of enzyme kinetics. The generalized method is used to construct solutions of two framework models which have been introduced previously, the single-particle and Grotthuss (proton conduction) models. The solution of the Grotthuss model is greatly simplified in comparison with direct integration. In addition, a new framework model is introduced, generalizing the shaking stack model of ion conduction through the potassium channel.
doi_str_mv 10.1007/s11538-005-9016-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68844632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094912921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVpadwkP6CXsuSQmxp9rL6OISRtaSCX5Cy00tjedCW50i4h_fWRsSHQ0wzM8w4zD0JfKflOCVFXlVLBNSZEYEOoxPQDWlHBGDaSsI9oRYhhWLOenKAvtT6TljHcfEYnVGqpteAr5O-Ki_CSy58u5gBT7fK6G3PqdlAiuHnfztuSl822ixCH4hJ0futS2rMuhTaFbgMJipvGfxC632Pa4Otpji61xLzN4Qx9WrupwvmxnqKnu9vHm5_4_uHHr5vre-w5kzNm0K-VZ5p6riXVgVFtlOuF4WJQVNDAlDchaB_UwLgORA0Ag_RSONFTBfwUXR727kr-u0CdbRyrh2lqN-el2vZy30vOGnjxH_icl5LabVbxnnFiZN8geoB8ybUWWNtdGaMrr5YSu9dvD_pt02_3-i1tmW_HxcsQIbwnjr75GzZtgEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734230964</pqid></control><display><type>article</type><title>Framework models of ion permeation through membrane channels and the generalized King-Altman method</title><source>Springer Link</source><creator>Mapes, Eric J ; Schumaker, Mark F</creator><creatorcontrib>Mapes, Eric J ; Schumaker, Mark F</creatorcontrib><description>A modern approach to studying the detailed dynamics of biomolecules is to simulate them on computers. Framework models have been developed to incorporate information from these simulations in order to calculate properties of the biomolecules on much longer time scales than can be achieved by the simulations. They also provide a simple way to think about the simulated dynamics. This article develops a method for the solution of framework models, which generalizes the King-Altman method of enzyme kinetics. The generalized method is used to construct solutions of two framework models which have been introduced previously, the single-particle and Grotthuss (proton conduction) models. The solution of the Grotthuss model is greatly simplified in comparison with direct integration. In addition, a new framework model is introduced, generalizing the shaking stack model of ion conduction through the potassium channel.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-005-9016-1</identifier><identifier>PMID: 16868853</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Algorithms ; Bacterial Proteins - chemistry ; Diffusion ; Enzyme kinetics ; Gramicidin - chemistry ; Ion Channels - chemistry ; Ions - chemistry ; Markov Chains ; Models, Chemical ; Potassium - chemistry ; Potassium Channels - chemistry ; Protons ; Sodium - chemistry ; Stochastic Processes ; Studies ; Water - chemistry</subject><ispartof>Bulletin of mathematical biology, 2006-10, Vol.68 (7), p.1429-1460</ispartof><rights>Springer Science+Business Media, Inc. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3</citedby><cites>FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16868853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mapes, Eric J</creatorcontrib><creatorcontrib>Schumaker, Mark F</creatorcontrib><title>Framework models of ion permeation through membrane channels and the generalized King-Altman method</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><description>A modern approach to studying the detailed dynamics of biomolecules is to simulate them on computers. Framework models have been developed to incorporate information from these simulations in order to calculate properties of the biomolecules on much longer time scales than can be achieved by the simulations. They also provide a simple way to think about the simulated dynamics. This article develops a method for the solution of framework models, which generalizes the King-Altman method of enzyme kinetics. The generalized method is used to construct solutions of two framework models which have been introduced previously, the single-particle and Grotthuss (proton conduction) models. The solution of the Grotthuss model is greatly simplified in comparison with direct integration. In addition, a new framework model is introduced, generalizing the shaking stack model of ion conduction through the potassium channel.</description><subject>Algorithms</subject><subject>Bacterial Proteins - chemistry</subject><subject>Diffusion</subject><subject>Enzyme kinetics</subject><subject>Gramicidin - chemistry</subject><subject>Ion Channels - chemistry</subject><subject>Ions - chemistry</subject><subject>Markov Chains</subject><subject>Models, Chemical</subject><subject>Potassium - chemistry</subject><subject>Potassium Channels - chemistry</subject><subject>Protons</subject><subject>Sodium - chemistry</subject><subject>Stochastic Processes</subject><subject>Studies</subject><subject>Water - chemistry</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkE1rGzEQhkVpadwkP6CXsuSQmxp9rL6OISRtaSCX5Cy00tjedCW50i4h_fWRsSHQ0wzM8w4zD0JfKflOCVFXlVLBNSZEYEOoxPQDWlHBGDaSsI9oRYhhWLOenKAvtT6TljHcfEYnVGqpteAr5O-Ki_CSy58u5gBT7fK6G3PqdlAiuHnfztuSl822ixCH4hJ0futS2rMuhTaFbgMJipvGfxC632Pa4Otpji61xLzN4Qx9WrupwvmxnqKnu9vHm5_4_uHHr5vre-w5kzNm0K-VZ5p6riXVgVFtlOuF4WJQVNDAlDchaB_UwLgORA0Ag_RSONFTBfwUXR727kr-u0CdbRyrh2lqN-el2vZy30vOGnjxH_icl5LabVbxnnFiZN8geoB8ybUWWNtdGaMrr5YSu9dvD_pt02_3-i1tmW_HxcsQIbwnjr75GzZtgEg</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Mapes, Eric J</creator><creator>Schumaker, Mark F</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20061001</creationdate><title>Framework models of ion permeation through membrane channels and the generalized King-Altman method</title><author>Mapes, Eric J ; Schumaker, Mark F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Bacterial Proteins - chemistry</topic><topic>Diffusion</topic><topic>Enzyme kinetics</topic><topic>Gramicidin - chemistry</topic><topic>Ion Channels - chemistry</topic><topic>Ions - chemistry</topic><topic>Markov Chains</topic><topic>Models, Chemical</topic><topic>Potassium - chemistry</topic><topic>Potassium Channels - chemistry</topic><topic>Protons</topic><topic>Sodium - chemistry</topic><topic>Stochastic Processes</topic><topic>Studies</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mapes, Eric J</creatorcontrib><creatorcontrib>Schumaker, Mark F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mapes, Eric J</au><au>Schumaker, Mark F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Framework models of ion permeation through membrane channels and the generalized King-Altman method</atitle><jtitle>Bulletin of mathematical biology</jtitle><addtitle>Bull Math Biol</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>68</volume><issue>7</issue><spage>1429</spage><epage>1460</epage><pages>1429-1460</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>A modern approach to studying the detailed dynamics of biomolecules is to simulate them on computers. Framework models have been developed to incorporate information from these simulations in order to calculate properties of the biomolecules on much longer time scales than can be achieved by the simulations. They also provide a simple way to think about the simulated dynamics. This article develops a method for the solution of framework models, which generalizes the King-Altman method of enzyme kinetics. The generalized method is used to construct solutions of two framework models which have been introduced previously, the single-particle and Grotthuss (proton conduction) models. The solution of the Grotthuss model is greatly simplified in comparison with direct integration. In addition, a new framework model is introduced, generalizing the shaking stack model of ion conduction through the potassium channel.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>16868853</pmid><doi>10.1007/s11538-005-9016-1</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2006-10, Vol.68 (7), p.1429-1460
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_68844632
source Springer Link
subjects Algorithms
Bacterial Proteins - chemistry
Diffusion
Enzyme kinetics
Gramicidin - chemistry
Ion Channels - chemistry
Ions - chemistry
Markov Chains
Models, Chemical
Potassium - chemistry
Potassium Channels - chemistry
Protons
Sodium - chemistry
Stochastic Processes
Studies
Water - chemistry
title Framework models of ion permeation through membrane channels and the generalized King-Altman method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Framework%20models%20of%20ion%20permeation%20through%20membrane%20channels%20and%20the%20generalized%20King-Altman%20method&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Mapes,%20Eric%20J&rft.date=2006-10-01&rft.volume=68&rft.issue=7&rft.spage=1429&rft.epage=1460&rft.pages=1429-1460&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-005-9016-1&rft_dat=%3Cproquest_cross%3E2094912921%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-2e4f7c281c38618d21897a45935b7151d27c9dd8cd7b238d07beeb6c65a5417e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734230964&rft_id=info:pmid/16868853&rfr_iscdi=true