Loading…

A Data Integration Methodology for Systems Biology: Experimental Verification

The integration of data from multiple global assays is essential to understanding dynamic spatiotemporal interactions within cells. In a companion paper, we reported a data integration methodology, designated Pointillist, that can handle multiple data types from technologies with different noise cha...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2005-11, Vol.102 (48), p.17302-17307
Main Authors: Daehee Hwang, Smith, Jennifer J., Deena M. Leslie, Weston, Andrea D., Rust, Alistair G., Stephen Ramsey, Pedro de Atauri, Siegel, Andrew F., Bolouri, Hamid, Aitchison, John D., Hood, Leroy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-22b991fe4e2bbe074308cbc59c43c5982e19c9a4353320febac0fecf6c3b88e43
cites cdi_FETCH-LOGICAL-c529t-22b991fe4e2bbe074308cbc59c43c5982e19c9a4353320febac0fecf6c3b88e43
container_end_page 17307
container_issue 48
container_start_page 17302
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Daehee Hwang
Smith, Jennifer J.
Deena M. Leslie
Weston, Andrea D.
Rust, Alistair G.
Stephen Ramsey
Pedro de Atauri
Siegel, Andrew F.
Bolouri, Hamid
Aitchison, John D.
Hood, Leroy
description The integration of data from multiple global assays is essential to understanding dynamic spatiotemporal interactions within cells. In a companion paper, we reported a data integration methodology, designated Pointillist, that can handle multiple data types from technologies with different noise characteristics. Here we demonstrate its application to the integration of 18 data sets relating to galactose utilization in yeast. These data include global changes in mRNA and protein abundance, genome-wide protein-DNA interaction data, database information, and computational predictions of protein-DNA and protein-protein interactions. We divided the integration task to determine three network components: key system elements (genes and proteins), protein-protein interactions, and protein-DNA interactions. Results indicate that the reconstructed network efficiently focuses on and recapitulates the known biology of galactose utilization. It also provided new insights, some of which were verified experimentally. The methodology described here, addresses a critical need across all domains of molecular and cell biology, to effectively integrate large and disparate data sets.
doi_str_mv 10.1073/pnas.0508649102
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68845333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4152473</jstor_id><sourcerecordid>4152473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-22b991fe4e2bbe074308cbc59c43c5982e19c9a4353320febac0fecf6c3b88e43</originalsourceid><addsrcrecordid>eNqFkctv1DAQxi1ERZeFMxeELA5IHNKOH0nsHpBKaUulVhx4XC3HnWyzysaL7aDuf4_3oS7l0svYY__m83g-Qt4wOGJQi-PlYOMRlKAqqRnwZ2TCQLMiZ_CcTAB4XSjJ5SF5GeMcAHSp4AU5ZJUAVopqQm5O6RebLL0aEs6CTZ0f6A2mO3_rez9b0dYH-n0VEy4i_dxtzk7o-f0SQ7fAIdme_srbtnOb0lfkoLV9xNe7dUp-Xpz_OPtaXH-7vDo7vS5cyXUqOG-0Zi1K5E2DUEsByjWu1E6KHBVHpp22UpRCcGixsS5H11ZONEqhFFPyaau7HJsF3rrcSbC9WeambFgZbzvz-Gbo7szM_zGM67pSIgt82AkE_3vEmMyiiw773g7ox2gqpWR-_GmQ6RpKmec5Je__A-d-DEOeguHARFlBxTN0vIVc8DEGbB9aZmDWhpq1oWZvaK549-9P9_zOwQzQHbCu3MtxI5VhtdhofHwCMe3Y9wnvU2bfbtl5TD48wJKVXNZC_AWomL76</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201356062</pqid></control><display><type>article</type><title>A Data Integration Methodology for Systems Biology: Experimental Verification</title><source>PMC (PubMed Central)</source><source>JSTOR</source><creator>Daehee Hwang ; Smith, Jennifer J. ; Deena M. Leslie ; Weston, Andrea D. ; Rust, Alistair G. ; Stephen Ramsey ; Pedro de Atauri ; Siegel, Andrew F. ; Bolouri, Hamid ; Aitchison, John D. ; Hood, Leroy</creator><creatorcontrib>Daehee Hwang ; Smith, Jennifer J. ; Deena M. Leslie ; Weston, Andrea D. ; Rust, Alistair G. ; Stephen Ramsey ; Pedro de Atauri ; Siegel, Andrew F. ; Bolouri, Hamid ; Aitchison, John D. ; Hood, Leroy</creatorcontrib><description>The integration of data from multiple global assays is essential to understanding dynamic spatiotemporal interactions within cells. In a companion paper, we reported a data integration methodology, designated Pointillist, that can handle multiple data types from technologies with different noise characteristics. Here we demonstrate its application to the integration of 18 data sets relating to galactose utilization in yeast. These data include global changes in mRNA and protein abundance, genome-wide protein-DNA interaction data, database information, and computational predictions of protein-DNA and protein-protein interactions. We divided the integration task to determine three network components: key system elements (genes and proteins), protein-protein interactions, and protein-DNA interactions. Results indicate that the reconstructed network efficiently focuses on and recapitulates the known biology of galactose utilization. It also provided new insights, some of which were verified experimentally. The methodology described here, addresses a critical need across all domains of molecular and cell biology, to effectively integrate large and disparate data sets.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0508649102</identifier><identifier>PMID: 16301536</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cellular biology ; Chromatin ; Chromatin Immunoprecipitation ; Data analysis ; Data integration ; Datasets ; Galactose - genetics ; Galactose - metabolism ; Genes ; Informatics - methods ; Information Systems ; Metabolism ; Microarray Analysis ; Monosaccharide Transport Proteins - metabolism ; P values ; Protein metabolism ; Research methodology ; Saccharomyces cerevisiae Proteins - metabolism ; Software ; Systems Biology - methods ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-11, Vol.102 (48), p.17302-17307</ispartof><rights>Copyright 2005 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 29, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-22b991fe4e2bbe074308cbc59c43c5982e19c9a4353320febac0fecf6c3b88e43</citedby><cites>FETCH-LOGICAL-c529t-22b991fe4e2bbe074308cbc59c43c5982e19c9a4353320febac0fecf6c3b88e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/48.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4152473$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4152473$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16301536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daehee Hwang</creatorcontrib><creatorcontrib>Smith, Jennifer J.</creatorcontrib><creatorcontrib>Deena M. Leslie</creatorcontrib><creatorcontrib>Weston, Andrea D.</creatorcontrib><creatorcontrib>Rust, Alistair G.</creatorcontrib><creatorcontrib>Stephen Ramsey</creatorcontrib><creatorcontrib>Pedro de Atauri</creatorcontrib><creatorcontrib>Siegel, Andrew F.</creatorcontrib><creatorcontrib>Bolouri, Hamid</creatorcontrib><creatorcontrib>Aitchison, John D.</creatorcontrib><creatorcontrib>Hood, Leroy</creatorcontrib><title>A Data Integration Methodology for Systems Biology: Experimental Verification</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The integration of data from multiple global assays is essential to understanding dynamic spatiotemporal interactions within cells. In a companion paper, we reported a data integration methodology, designated Pointillist, that can handle multiple data types from technologies with different noise characteristics. Here we demonstrate its application to the integration of 18 data sets relating to galactose utilization in yeast. These data include global changes in mRNA and protein abundance, genome-wide protein-DNA interaction data, database information, and computational predictions of protein-DNA and protein-protein interactions. We divided the integration task to determine three network components: key system elements (genes and proteins), protein-protein interactions, and protein-DNA interactions. Results indicate that the reconstructed network efficiently focuses on and recapitulates the known biology of galactose utilization. It also provided new insights, some of which were verified experimentally. The methodology described here, addresses a critical need across all domains of molecular and cell biology, to effectively integrate large and disparate data sets.</description><subject>Biological Sciences</subject><subject>Cellular biology</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation</subject><subject>Data analysis</subject><subject>Data integration</subject><subject>Datasets</subject><subject>Galactose - genetics</subject><subject>Galactose - metabolism</subject><subject>Genes</subject><subject>Informatics - methods</subject><subject>Information Systems</subject><subject>Metabolism</subject><subject>Microarray Analysis</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>P values</subject><subject>Protein metabolism</subject><subject>Research methodology</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Software</subject><subject>Systems Biology - methods</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkctv1DAQxi1ERZeFMxeELA5IHNKOH0nsHpBKaUulVhx4XC3HnWyzysaL7aDuf4_3oS7l0svYY__m83g-Qt4wOGJQi-PlYOMRlKAqqRnwZ2TCQLMiZ_CcTAB4XSjJ5SF5GeMcAHSp4AU5ZJUAVopqQm5O6RebLL0aEs6CTZ0f6A2mO3_rez9b0dYH-n0VEy4i_dxtzk7o-f0SQ7fAIdme_srbtnOb0lfkoLV9xNe7dUp-Xpz_OPtaXH-7vDo7vS5cyXUqOG-0Zi1K5E2DUEsByjWu1E6KHBVHpp22UpRCcGixsS5H11ZONEqhFFPyaau7HJsF3rrcSbC9WeambFgZbzvz-Gbo7szM_zGM67pSIgt82AkE_3vEmMyiiw773g7ox2gqpWR-_GmQ6RpKmec5Je__A-d-DEOeguHARFlBxTN0vIVc8DEGbB9aZmDWhpq1oWZvaK549-9P9_zOwQzQHbCu3MtxI5VhtdhofHwCMe3Y9wnvU2bfbtl5TD48wJKVXNZC_AWomL76</recordid><startdate>20051129</startdate><enddate>20051129</enddate><creator>Daehee Hwang</creator><creator>Smith, Jennifer J.</creator><creator>Deena M. Leslie</creator><creator>Weston, Andrea D.</creator><creator>Rust, Alistair G.</creator><creator>Stephen Ramsey</creator><creator>Pedro de Atauri</creator><creator>Siegel, Andrew F.</creator><creator>Bolouri, Hamid</creator><creator>Aitchison, John D.</creator><creator>Hood, Leroy</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051129</creationdate><title>A Data Integration Methodology for Systems Biology: Experimental Verification</title><author>Daehee Hwang ; Smith, Jennifer J. ; Deena M. Leslie ; Weston, Andrea D. ; Rust, Alistair G. ; Stephen Ramsey ; Pedro de Atauri ; Siegel, Andrew F. ; Bolouri, Hamid ; Aitchison, John D. ; Hood, Leroy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-22b991fe4e2bbe074308cbc59c43c5982e19c9a4353320febac0fecf6c3b88e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological Sciences</topic><topic>Cellular biology</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation</topic><topic>Data analysis</topic><topic>Data integration</topic><topic>Datasets</topic><topic>Galactose - genetics</topic><topic>Galactose - metabolism</topic><topic>Genes</topic><topic>Informatics - methods</topic><topic>Information Systems</topic><topic>Metabolism</topic><topic>Microarray Analysis</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>P values</topic><topic>Protein metabolism</topic><topic>Research methodology</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Software</topic><topic>Systems Biology - methods</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daehee Hwang</creatorcontrib><creatorcontrib>Smith, Jennifer J.</creatorcontrib><creatorcontrib>Deena M. Leslie</creatorcontrib><creatorcontrib>Weston, Andrea D.</creatorcontrib><creatorcontrib>Rust, Alistair G.</creatorcontrib><creatorcontrib>Stephen Ramsey</creatorcontrib><creatorcontrib>Pedro de Atauri</creatorcontrib><creatorcontrib>Siegel, Andrew F.</creatorcontrib><creatorcontrib>Bolouri, Hamid</creatorcontrib><creatorcontrib>Aitchison, John D.</creatorcontrib><creatorcontrib>Hood, Leroy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daehee Hwang</au><au>Smith, Jennifer J.</au><au>Deena M. Leslie</au><au>Weston, Andrea D.</au><au>Rust, Alistair G.</au><au>Stephen Ramsey</au><au>Pedro de Atauri</au><au>Siegel, Andrew F.</au><au>Bolouri, Hamid</au><au>Aitchison, John D.</au><au>Hood, Leroy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data Integration Methodology for Systems Biology: Experimental Verification</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-11-29</date><risdate>2005</risdate><volume>102</volume><issue>48</issue><spage>17302</spage><epage>17307</epage><pages>17302-17307</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The integration of data from multiple global assays is essential to understanding dynamic spatiotemporal interactions within cells. In a companion paper, we reported a data integration methodology, designated Pointillist, that can handle multiple data types from technologies with different noise characteristics. Here we demonstrate its application to the integration of 18 data sets relating to galactose utilization in yeast. These data include global changes in mRNA and protein abundance, genome-wide protein-DNA interaction data, database information, and computational predictions of protein-DNA and protein-protein interactions. We divided the integration task to determine three network components: key system elements (genes and proteins), protein-protein interactions, and protein-DNA interactions. Results indicate that the reconstructed network efficiently focuses on and recapitulates the known biology of galactose utilization. It also provided new insights, some of which were verified experimentally. The methodology described here, addresses a critical need across all domains of molecular and cell biology, to effectively integrate large and disparate data sets.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16301536</pmid><doi>10.1073/pnas.0508649102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-11, Vol.102 (48), p.17302-17307
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_68845333
source PMC (PubMed Central); JSTOR
subjects Biological Sciences
Cellular biology
Chromatin
Chromatin Immunoprecipitation
Data analysis
Data integration
Datasets
Galactose - genetics
Galactose - metabolism
Genes
Informatics - methods
Information Systems
Metabolism
Microarray Analysis
Monosaccharide Transport Proteins - metabolism
P values
Protein metabolism
Research methodology
Saccharomyces cerevisiae Proteins - metabolism
Software
Systems Biology - methods
Yeast
Yeasts
title A Data Integration Methodology for Systems Biology: Experimental Verification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data%20Integration%20Methodology%20for%20Systems%20Biology:%20Experimental%20Verification&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Daehee%20Hwang&rft.date=2005-11-29&rft.volume=102&rft.issue=48&rft.spage=17302&rft.epage=17307&rft.pages=17302-17307&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0508649102&rft_dat=%3Cjstor_proqu%3E4152473%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-22b991fe4e2bbe074308cbc59c43c5982e19c9a4353320febac0fecf6c3b88e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201356062&rft_id=info:pmid/16301536&rft_jstor_id=4152473&rfr_iscdi=true