Loading…
Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilisation mechanisms
Poloxamers are a family of polypropylene oxide (PPO) and polyethylene oxide (PEO) tri-block copolymers that are usually employed in the micro- and nanoparticulate engineering for drug delivery systems. The aim of this work is to study the electrophoretic mobility ( μ e ) and colloidal stability of c...
Saved in:
Published in: | Journal of colloid and interface science 2006-10, Vol.302 (2), p.522-529 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-4a494069e6b21451f666932a274bc6e48966723f1e063f0e4cfdc131a25370363 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-4a494069e6b21451f666932a274bc6e48966723f1e063f0e4cfdc131a25370363 |
container_end_page | 529 |
container_issue | 2 |
container_start_page | 522 |
container_title | Journal of colloid and interface science |
container_volume | 302 |
creator | Santander-Ortega, M.J. Jódar-Reyes, A.B. Csaba, N. Bastos-González, D. Ortega-Vinuesa, J.L. |
description | Poloxamers are a family of polypropylene oxide (PPO) and polyethylene oxide (PEO) tri-block copolymers that are usually employed in the micro- and nanoparticulate engineering for drug delivery systems. The aim of this work is to study the electrophoretic mobility (
μ
e
) and colloidal stability of complexes formed by adsorbing a poloxamer (Pluronic F68) onto poly(
d,
l-lactic-
co-glycolic acid) (PLGA) nanoparticles. A variety of stabilisation mechanisms have been observed for the Pluronic-coated PLGA nanoparticles, where DLVO interactions, solvent–polymer segment interactions and hydration forces play different roles as a function of the adsorbed amount of Pluronic. In addition, the
μ
e
and stability data of these complexes have been compared to those obtained previously using a PLGA–Pluronic F68 blend formulation. As both the
μ
e
and the stability data are identical between the two systems, a phase separation of both components in the PLGA–Pluronic blend formulation is suggested, being the PLGA located in the core of the particles and the Pluronic in an adsorbed shell. |
doi_str_mv | 10.1016/j.jcis.2006.07.031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68848013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979706005947</els_id><sourcerecordid>68848013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-4a494069e6b21451f666932a274bc6e48966723f1e063f0e4cfdc131a25370363</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS0EapfSP8AB-QK3hJnYcRzEZbVqC9JK9ABny-tMhFdOvNjZSv33JNqo3DjN5XtPbz7G3iOUCKg-H8uj87msAFQJTQkCX7ENQlsXDYJ4zTYAFRZt0zbX7G3ORwDEum6v2DUqrRsUesO6XQwh-s4Gnid78MFPzzz2_DGcUxy94_dKFy7aiTr-uH_Y8tGO8WTT5F2g_IVv-ZNNni6htSHbyceRD-R-29HnIb9jb3obMt2u94b9ur_7uftW7H88fN9t94UTWk6FtLKVoFpShwpljb1SqhWVrRp5cIqkbpVqKtEjgRI9kHR951CgrWrRgFDihn269J5S_HOmPJnBZ0ch2JHiOZv5a6kBxQxWF9ClmHOi3pySH2x6NghmcWuOZnFrFrcGGjO7nUMf1vbzYaDuX2SVOQMfV8BmZ0Of7Lh0vHAapdZ6mfn1wtHs4slTMtl5Gh11PpGbTBf9_3b8BYDglqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68848013</pqid></control><display><type>article</type><title>Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilisation mechanisms</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Santander-Ortega, M.J. ; Jódar-Reyes, A.B. ; Csaba, N. ; Bastos-González, D. ; Ortega-Vinuesa, J.L.</creator><creatorcontrib>Santander-Ortega, M.J. ; Jódar-Reyes, A.B. ; Csaba, N. ; Bastos-González, D. ; Ortega-Vinuesa, J.L.</creatorcontrib><description>Poloxamers are a family of polypropylene oxide (PPO) and polyethylene oxide (PEO) tri-block copolymers that are usually employed in the micro- and nanoparticulate engineering for drug delivery systems. The aim of this work is to study the electrophoretic mobility (
μ
e
) and colloidal stability of complexes formed by adsorbing a poloxamer (Pluronic F68) onto poly(
d,
l-lactic-
co-glycolic acid) (PLGA) nanoparticles. A variety of stabilisation mechanisms have been observed for the Pluronic-coated PLGA nanoparticles, where DLVO interactions, solvent–polymer segment interactions and hydration forces play different roles as a function of the adsorbed amount of Pluronic. In addition, the
μ
e
and stability data of these complexes have been compared to those obtained previously using a PLGA–Pluronic F68 blend formulation. As both the
μ
e
and the stability data are identical between the two systems, a phase separation of both components in the PLGA–Pluronic blend formulation is suggested, being the PLGA located in the core of the particles and the Pluronic in an adsorbed shell.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2006.07.031</identifier><identifier>PMID: 16887138</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Adsorption ; Calcium Chloride - chemistry ; Chemistry ; Colloidal stability ; Colloidal state and disperse state ; Colloids ; DLVO interactions ; Exact sciences and technology ; General and physical chemistry ; Hydration interactions ; Hydrogen-Ion Concentration ; Lactic Acid - chemistry ; Molecular Structure ; Nanoparticle ; Nanoparticles - chemistry ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; PLGA ; Poloxamer - chemistry ; Poloxamer adsorption ; Polyglycolic Acid - chemistry ; Polymers - chemistry ; Sodium Chloride - chemistry ; Steric interactions ; Surface physical chemistry ; Surface Properties</subject><ispartof>Journal of colloid and interface science, 2006-10, Vol.302 (2), p.522-529</ispartof><rights>2006 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-4a494069e6b21451f666932a274bc6e48966723f1e063f0e4cfdc131a25370363</citedby><cites>FETCH-LOGICAL-c384t-4a494069e6b21451f666932a274bc6e48966723f1e063f0e4cfdc131a25370363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18148886$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16887138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santander-Ortega, M.J.</creatorcontrib><creatorcontrib>Jódar-Reyes, A.B.</creatorcontrib><creatorcontrib>Csaba, N.</creatorcontrib><creatorcontrib>Bastos-González, D.</creatorcontrib><creatorcontrib>Ortega-Vinuesa, J.L.</creatorcontrib><title>Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilisation mechanisms</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Poloxamers are a family of polypropylene oxide (PPO) and polyethylene oxide (PEO) tri-block copolymers that are usually employed in the micro- and nanoparticulate engineering for drug delivery systems. The aim of this work is to study the electrophoretic mobility (
μ
e
) and colloidal stability of complexes formed by adsorbing a poloxamer (Pluronic F68) onto poly(
d,
l-lactic-
co-glycolic acid) (PLGA) nanoparticles. A variety of stabilisation mechanisms have been observed for the Pluronic-coated PLGA nanoparticles, where DLVO interactions, solvent–polymer segment interactions and hydration forces play different roles as a function of the adsorbed amount of Pluronic. In addition, the
μ
e
and stability data of these complexes have been compared to those obtained previously using a PLGA–Pluronic F68 blend formulation. As both the
μ
e
and the stability data are identical between the two systems, a phase separation of both components in the PLGA–Pluronic blend formulation is suggested, being the PLGA located in the core of the particles and the Pluronic in an adsorbed shell.</description><subject>Adsorption</subject><subject>Calcium Chloride - chemistry</subject><subject>Chemistry</subject><subject>Colloidal stability</subject><subject>Colloidal state and disperse state</subject><subject>Colloids</subject><subject>DLVO interactions</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydration interactions</subject><subject>Hydrogen-Ion Concentration</subject><subject>Lactic Acid - chemistry</subject><subject>Molecular Structure</subject><subject>Nanoparticle</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>PLGA</subject><subject>Poloxamer - chemistry</subject><subject>Poloxamer adsorption</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polymers - chemistry</subject><subject>Sodium Chloride - chemistry</subject><subject>Steric interactions</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhS0EapfSP8AB-QK3hJnYcRzEZbVqC9JK9ABny-tMhFdOvNjZSv33JNqo3DjN5XtPbz7G3iOUCKg-H8uj87msAFQJTQkCX7ENQlsXDYJ4zTYAFRZt0zbX7G3ORwDEum6v2DUqrRsUesO6XQwh-s4Gnid78MFPzzz2_DGcUxy94_dKFy7aiTr-uH_Y8tGO8WTT5F2g_IVv-ZNNni6htSHbyceRD-R-29HnIb9jb3obMt2u94b9ur_7uftW7H88fN9t94UTWk6FtLKVoFpShwpljb1SqhWVrRp5cIqkbpVqKtEjgRI9kHR951CgrWrRgFDihn269J5S_HOmPJnBZ0ch2JHiOZv5a6kBxQxWF9ClmHOi3pySH2x6NghmcWuOZnFrFrcGGjO7nUMf1vbzYaDuX2SVOQMfV8BmZ0Of7Lh0vHAapdZ6mfn1wtHs4slTMtl5Gh11PpGbTBf9_3b8BYDglqQ</recordid><startdate>20061015</startdate><enddate>20061015</enddate><creator>Santander-Ortega, M.J.</creator><creator>Jódar-Reyes, A.B.</creator><creator>Csaba, N.</creator><creator>Bastos-González, D.</creator><creator>Ortega-Vinuesa, J.L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061015</creationdate><title>Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilisation mechanisms</title><author>Santander-Ortega, M.J. ; Jódar-Reyes, A.B. ; Csaba, N. ; Bastos-González, D. ; Ortega-Vinuesa, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-4a494069e6b21451f666932a274bc6e48966723f1e063f0e4cfdc131a25370363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adsorption</topic><topic>Calcium Chloride - chemistry</topic><topic>Chemistry</topic><topic>Colloidal stability</topic><topic>Colloidal state and disperse state</topic><topic>Colloids</topic><topic>DLVO interactions</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydration interactions</topic><topic>Hydrogen-Ion Concentration</topic><topic>Lactic Acid - chemistry</topic><topic>Molecular Structure</topic><topic>Nanoparticle</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>PLGA</topic><topic>Poloxamer - chemistry</topic><topic>Poloxamer adsorption</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polymers - chemistry</topic><topic>Sodium Chloride - chemistry</topic><topic>Steric interactions</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santander-Ortega, M.J.</creatorcontrib><creatorcontrib>Jódar-Reyes, A.B.</creatorcontrib><creatorcontrib>Csaba, N.</creatorcontrib><creatorcontrib>Bastos-González, D.</creatorcontrib><creatorcontrib>Ortega-Vinuesa, J.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santander-Ortega, M.J.</au><au>Jódar-Reyes, A.B.</au><au>Csaba, N.</au><au>Bastos-González, D.</au><au>Ortega-Vinuesa, J.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilisation mechanisms</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2006-10-15</date><risdate>2006</risdate><volume>302</volume><issue>2</issue><spage>522</spage><epage>529</epage><pages>522-529</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>Poloxamers are a family of polypropylene oxide (PPO) and polyethylene oxide (PEO) tri-block copolymers that are usually employed in the micro- and nanoparticulate engineering for drug delivery systems. The aim of this work is to study the electrophoretic mobility (
μ
e
) and colloidal stability of complexes formed by adsorbing a poloxamer (Pluronic F68) onto poly(
d,
l-lactic-
co-glycolic acid) (PLGA) nanoparticles. A variety of stabilisation mechanisms have been observed for the Pluronic-coated PLGA nanoparticles, where DLVO interactions, solvent–polymer segment interactions and hydration forces play different roles as a function of the adsorbed amount of Pluronic. In addition, the
μ
e
and stability data of these complexes have been compared to those obtained previously using a PLGA–Pluronic F68 blend formulation. As both the
μ
e
and the stability data are identical between the two systems, a phase separation of both components in the PLGA–Pluronic blend formulation is suggested, being the PLGA located in the core of the particles and the Pluronic in an adsorbed shell.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>16887138</pmid><doi>10.1016/j.jcis.2006.07.031</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2006-10, Vol.302 (2), p.522-529 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_68848013 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Adsorption Calcium Chloride - chemistry Chemistry Colloidal stability Colloidal state and disperse state Colloids DLVO interactions Exact sciences and technology General and physical chemistry Hydration interactions Hydrogen-Ion Concentration Lactic Acid - chemistry Molecular Structure Nanoparticle Nanoparticles - chemistry Particle Size Physical and chemical studies. Granulometry. Electrokinetic phenomena PLGA Poloxamer - chemistry Poloxamer adsorption Polyglycolic Acid - chemistry Polymers - chemistry Sodium Chloride - chemistry Steric interactions Surface physical chemistry Surface Properties |
title | Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilisation mechanisms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20stability%20of%20Pluronic%20F68-coated%20PLGA%20nanoparticles:%20A%20variety%20of%20stabilisation%20mechanisms&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Santander-Ortega,%20M.J.&rft.date=2006-10-15&rft.volume=302&rft.issue=2&rft.spage=522&rft.epage=529&rft.pages=522-529&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2006.07.031&rft_dat=%3Cproquest_cross%3E68848013%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-4a494069e6b21451f666932a274bc6e48966723f1e063f0e4cfdc131a25370363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68848013&rft_id=info:pmid/16887138&rfr_iscdi=true |