Loading…
Haemozoin (β-haematin) biomineralization occurs by self-assembly near the lipid/water interface
Several blood-feeding organisms, including the malaria parasite detoxify haem released from host haemoglobin by conversion to the insoluble crystalline ferriprotoporphyrin IX dimer known as haemozoin. To date the mechanism of haemozoin formation has remained unknown, although lipids or proteins have...
Saved in:
Published in: | FEBS letters 2006-09, Vol.580 (21), p.5105-5110 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Several blood-feeding organisms, including the malaria parasite detoxify haem released from host haemoglobin by conversion to the insoluble crystalline ferriprotoporphyrin IX dimer known as haemozoin. To date the mechanism of haemozoin formation has remained unknown, although lipids or proteins have been suggested to catalyse its formation. We have found that β-haematin (synthetic haemozoin) forms rapidly under physiologically realistic conditions near octanol/water, pentanol/water and lipid/water interfaces. Molecular dynamics simulations show that a precursor of the haemozoin dimer forms spontaneously in the absence of the competing hydrogen bonds of water, demonstrating that this substance probably self-assembles near a lipid/water interface in vivo. |
---|---|
ISSN: | 0014-5793 1873-3468 |
DOI: | 10.1016/j.febslet.2006.08.043 |