SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data

High-density genetic linkage maps can be used for purposes such as fine-scale targeted gene cloning and anchoring of physical maps. However, their construction is significantly complicated by even relatively small amounts of scoring errors. Currently available software is not able to solve the order...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics 2005-12, Vol.112 (1), p.187-194
Main Authors: Os, H. van, Stam, P, Visser, R.G.F, Eck, H.J. van
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-density genetic linkage maps can be used for purposes such as fine-scale targeted gene cloning and anchoring of physical maps. However, their construction is significantly complicated by even relatively small amounts of scoring errors. Currently available software is not able to solve the ordering ambiguities in marker clusters, which inhibits the application of high-density maps. A statistical method named SMOOTH was developed to remove genotyping errors from genetic linkage data during the mapping process. The program SMOOTH calculates the difference between the observed and predicted values of data points based on data points of neighbouring loci in a given marker order. Highly improbable data points are removed by the program in an iterative process with a mapping algorithm that recalculates the map after cleaning. SMOOTH has been tested with simulated data and experimental mapping data from potato. The simulations prove that this method is able to detect a high amount of scoring errors and demonstrates that the program enables mapping software to successfully construct a very accurate high-density map. In potato the application of the program resulted in a reliable placement of nearly 1,000 markers in one linkage group.
ISSN:0040-5752
1432-2242
DOI:10.1007/s00122-005-0124-y