Loading…

Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon

We model the dynamical states of the C-termini of tubulin dimers that comprise neuronal microtubules. We use molecular dynamics and other computational tools to explore the time-dependent behavior of conformational states of a C-terminus of tubulin within a microtubule and assume that each C-terminu...

Full description

Saved in:
Bibliographic Details
Published in:European biophysics journal 2005-12, Vol.35 (1), p.40-52
Main Authors: Priel, Avner, Tuszynski, Jack A, Woolf, Nancy J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-60ea2c4b3233f5d3ffd02e40c43eb6f9c4e9d1406cdca664fb5ea4deb118ef03
cites cdi_FETCH-LOGICAL-c326t-60ea2c4b3233f5d3ffd02e40c43eb6f9c4e9d1406cdca664fb5ea4deb118ef03
container_end_page 52
container_issue 1
container_start_page 40
container_title European biophysics journal
container_volume 35
creator Priel, Avner
Tuszynski, Jack A
Woolf, Nancy J
description We model the dynamical states of the C-termini of tubulin dimers that comprise neuronal microtubules. We use molecular dynamics and other computational tools to explore the time-dependent behavior of conformational states of a C-terminus of tubulin within a microtubule and assume that each C-terminus interacts via screened Coulomb forces with the surface of a tubulin dimer, with neighboring C-termini and also with any adjacent microtubule-associated protein 2 (MAP2). Each C-terminus can either bind to the tubulin surface via one of the several positively charged regions or can be allowed to explore the space available in the solution surrounding the dimer. We find that the preferential orientation of each C-terminus is away from the tubulin surface but binding to the surface may also take place, albeit at a lower probability. The results of our model suggest that perturbations generated by the C-termini interactions with counterions surrounding a MAP2 may propagate over distances greater than those between adjacent microtubules. Thus, the MAP2 structure is able to act as a kind of biological wire (or a cable) transmitting local electrostatic perturbations resulting in ionic concentration gradients from one microtubule to another. We briefly discuss the implications the current dynamic modeling may have on synaptic activation and potentiation.
doi_str_mv 10.1007/s00249-005-0003-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68856840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088030011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-60ea2c4b3233f5d3ffd02e40c43eb6f9c4e9d1406cdca664fb5ea4deb118ef03</originalsourceid><addsrcrecordid>eNpdkM1KxDAURoMozjj6AG6kuHBXvWnStLOUwT8YcDP7kKY3Y4Y2GZN24dub0gFBuN_N5uQjOYTcUnikANVTBCj4OgcoU4DlcEaWlLMip0Crc7JMu8yrsqILchXjAYCXlNaXZEEFrTmr6yWRu6BctIP1LmbWZb3VwQ9jM3aYbfIBQ2-dzbR3xodezZhKkx19jLZJVIuuDalAZ9Huneqs22fHL3S-T3HX5MKoLuLN6VyR3evLbvOebz_fPjbP21yzQgy5AFSF5g0rGDNly4xpoUAOmjNshFlrjuuWchC61UoIbpoSFW-xSf9BA2xFHubaY_DfI8ZB9jZq7Drl0I9RirouRc0n8P4fePBjSM9ODEu-aM1ogugMJRcxBjTyGGyvwo-kICfzcjYvk3k5mZdT8d2peGx6bP9unFSzX0YWgI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>630171831</pqid></control><display><type>article</type><title>Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon</title><source>Springer Link</source><creator>Priel, Avner ; Tuszynski, Jack A ; Woolf, Nancy J</creator><creatorcontrib>Priel, Avner ; Tuszynski, Jack A ; Woolf, Nancy J</creatorcontrib><description>We model the dynamical states of the C-termini of tubulin dimers that comprise neuronal microtubules. We use molecular dynamics and other computational tools to explore the time-dependent behavior of conformational states of a C-terminus of tubulin within a microtubule and assume that each C-terminus interacts via screened Coulomb forces with the surface of a tubulin dimer, with neighboring C-termini and also with any adjacent microtubule-associated protein 2 (MAP2). Each C-terminus can either bind to the tubulin surface via one of the several positively charged regions or can be allowed to explore the space available in the solution surrounding the dimer. We find that the preferential orientation of each C-terminus is away from the tubulin surface but binding to the surface may also take place, albeit at a lower probability. The results of our model suggest that perturbations generated by the C-termini interactions with counterions surrounding a MAP2 may propagate over distances greater than those between adjacent microtubules. Thus, the MAP2 structure is able to act as a kind of biological wire (or a cable) transmitting local electrostatic perturbations resulting in ionic concentration gradients from one microtubule to another. We briefly discuss the implications the current dynamic modeling may have on synaptic activation and potentiation.</description><identifier>ISSN: 0175-7571</identifier><identifier>EISSN: 1432-1017</identifier><identifier>DOI: 10.1007/s00249-005-0003-0</identifier><identifier>PMID: 16184388</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Dendrites - genetics ; Dendrites - metabolism ; Dimerization ; Humans ; Microtubule-Associated Proteins - metabolism ; Microtubules - metabolism ; Molecular Conformation ; Protein Binding ; Proteins ; Signal Transduction ; Species Specificity ; Static Electricity ; Time Factors ; Tubulin - chemistry ; Tubulin - metabolism</subject><ispartof>European biophysics journal, 2005-12, Vol.35 (1), p.40-52</ispartof><rights>EBSA 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-60ea2c4b3233f5d3ffd02e40c43eb6f9c4e9d1406cdca664fb5ea4deb118ef03</citedby><cites>FETCH-LOGICAL-c326t-60ea2c4b3233f5d3ffd02e40c43eb6f9c4e9d1406cdca664fb5ea4deb118ef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16184388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Priel, Avner</creatorcontrib><creatorcontrib>Tuszynski, Jack A</creatorcontrib><creatorcontrib>Woolf, Nancy J</creatorcontrib><title>Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon</title><title>European biophysics journal</title><addtitle>Eur Biophys J</addtitle><description>We model the dynamical states of the C-termini of tubulin dimers that comprise neuronal microtubules. We use molecular dynamics and other computational tools to explore the time-dependent behavior of conformational states of a C-terminus of tubulin within a microtubule and assume that each C-terminus interacts via screened Coulomb forces with the surface of a tubulin dimer, with neighboring C-termini and also with any adjacent microtubule-associated protein 2 (MAP2). Each C-terminus can either bind to the tubulin surface via one of the several positively charged regions or can be allowed to explore the space available in the solution surrounding the dimer. We find that the preferential orientation of each C-terminus is away from the tubulin surface but binding to the surface may also take place, albeit at a lower probability. The results of our model suggest that perturbations generated by the C-termini interactions with counterions surrounding a MAP2 may propagate over distances greater than those between adjacent microtubules. Thus, the MAP2 structure is able to act as a kind of biological wire (or a cable) transmitting local electrostatic perturbations resulting in ionic concentration gradients from one microtubule to another. We briefly discuss the implications the current dynamic modeling may have on synaptic activation and potentiation.</description><subject>Dendrites - genetics</subject><subject>Dendrites - metabolism</subject><subject>Dimerization</subject><subject>Humans</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Molecular Conformation</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Signal Transduction</subject><subject>Species Specificity</subject><subject>Static Electricity</subject><subject>Time Factors</subject><subject>Tubulin - chemistry</subject><subject>Tubulin - metabolism</subject><issn>0175-7571</issn><issn>1432-1017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdkM1KxDAURoMozjj6AG6kuHBXvWnStLOUwT8YcDP7kKY3Y4Y2GZN24dub0gFBuN_N5uQjOYTcUnikANVTBCj4OgcoU4DlcEaWlLMip0Crc7JMu8yrsqILchXjAYCXlNaXZEEFrTmr6yWRu6BctIP1LmbWZb3VwQ9jM3aYbfIBQ2-dzbR3xodezZhKkx19jLZJVIuuDalAZ9Huneqs22fHL3S-T3HX5MKoLuLN6VyR3evLbvOebz_fPjbP21yzQgy5AFSF5g0rGDNly4xpoUAOmjNshFlrjuuWchC61UoIbpoSFW-xSf9BA2xFHubaY_DfI8ZB9jZq7Drl0I9RirouRc0n8P4fePBjSM9ODEu-aM1ogugMJRcxBjTyGGyvwo-kICfzcjYvk3k5mZdT8d2peGx6bP9unFSzX0YWgI4</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Priel, Avner</creator><creator>Tuszynski, Jack A</creator><creator>Woolf, Nancy J</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>200512</creationdate><title>Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon</title><author>Priel, Avner ; Tuszynski, Jack A ; Woolf, Nancy J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-60ea2c4b3233f5d3ffd02e40c43eb6f9c4e9d1406cdca664fb5ea4deb118ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Dendrites - genetics</topic><topic>Dendrites - metabolism</topic><topic>Dimerization</topic><topic>Humans</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Molecular Conformation</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Signal Transduction</topic><topic>Species Specificity</topic><topic>Static Electricity</topic><topic>Time Factors</topic><topic>Tubulin - chemistry</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priel, Avner</creatorcontrib><creatorcontrib>Tuszynski, Jack A</creatorcontrib><creatorcontrib>Woolf, Nancy J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>European biophysics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priel, Avner</au><au>Tuszynski, Jack A</au><au>Woolf, Nancy J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon</atitle><jtitle>European biophysics journal</jtitle><addtitle>Eur Biophys J</addtitle><date>2005-12</date><risdate>2005</risdate><volume>35</volume><issue>1</issue><spage>40</spage><epage>52</epage><pages>40-52</pages><issn>0175-7571</issn><eissn>1432-1017</eissn><abstract>We model the dynamical states of the C-termini of tubulin dimers that comprise neuronal microtubules. We use molecular dynamics and other computational tools to explore the time-dependent behavior of conformational states of a C-terminus of tubulin within a microtubule and assume that each C-terminus interacts via screened Coulomb forces with the surface of a tubulin dimer, with neighboring C-termini and also with any adjacent microtubule-associated protein 2 (MAP2). Each C-terminus can either bind to the tubulin surface via one of the several positively charged regions or can be allowed to explore the space available in the solution surrounding the dimer. We find that the preferential orientation of each C-terminus is away from the tubulin surface but binding to the surface may also take place, albeit at a lower probability. The results of our model suggest that perturbations generated by the C-termini interactions with counterions surrounding a MAP2 may propagate over distances greater than those between adjacent microtubules. Thus, the MAP2 structure is able to act as a kind of biological wire (or a cable) transmitting local electrostatic perturbations resulting in ionic concentration gradients from one microtubule to another. We briefly discuss the implications the current dynamic modeling may have on synaptic activation and potentiation.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>16184388</pmid><doi>10.1007/s00249-005-0003-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7571
ispartof European biophysics journal, 2005-12, Vol.35 (1), p.40-52
issn 0175-7571
1432-1017
language eng
recordid cdi_proquest_miscellaneous_68856840
source Springer Link
subjects Dendrites - genetics
Dendrites - metabolism
Dimerization
Humans
Microtubule-Associated Proteins - metabolism
Microtubules - metabolism
Molecular Conformation
Protein Binding
Proteins
Signal Transduction
Species Specificity
Static Electricity
Time Factors
Tubulin - chemistry
Tubulin - metabolism
title Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transitions%20in%20microtubule%20C-termini%20conformations%20as%20a%20possible%20dendritic%20signaling%20phenomenon&rft.jtitle=European%20biophysics%20journal&rft.au=Priel,%20Avner&rft.date=2005-12&rft.volume=35&rft.issue=1&rft.spage=40&rft.epage=52&rft.pages=40-52&rft.issn=0175-7571&rft.eissn=1432-1017&rft_id=info:doi/10.1007/s00249-005-0003-0&rft_dat=%3Cproquest_cross%3E2088030011%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-60ea2c4b3233f5d3ffd02e40c43eb6f9c4e9d1406cdca664fb5ea4deb118ef03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=630171831&rft_id=info:pmid/16184388&rfr_iscdi=true