Loading…

Brain Signals for Spatial Attention Predict Performance in a Motion Discrimination Task

The reliability of visual perception is thought to reflect the quality of the sensory information. However, we show that subjects' performance can be predicted, trial-by-trial, by neural activity that precedes the onset of a sensory stimulus. Using functional MRI (fMRI), we studied how neural m...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2005-12, Vol.102 (49), p.17810-17815
Main Authors: Ayelet Sapir, Giovanni d'Avossa, McAvoy, Mark, Shulman, Gordon L., Corbetta, Maurizio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The reliability of visual perception is thought to reflect the quality of the sensory information. However, we show that subjects' performance can be predicted, trial-by-trial, by neural activity that precedes the onset of a sensory stimulus. Using functional MRI (fMRI), we studied how neural mechanisms that mediate spatial attention affect the accuracy of a motion discrimination judgment. The amplitude of blood oxygen level-dependent (BOLD) signals after a cue directing spatial attention predicted subjects' accuracy on 60-75% of the trials. Widespread predictive signals, which included dorsal parietal, visual extra-striate, prefrontal and sensory-motor cortex, depended on whether the cue correctly specified the stimulus location. Therefore, these signals indicate the degree of utilization of the cued information and play a role in the control of spatial attention. We conclude that variability in perceptual performance can be partly explained by the variability in endogenous, preparatory processes and that BOLD signals can be used to forecast human behavior.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0504678102