Loading…
Structure and function of gap junctions in the developing brain
Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that...
Saved in:
Published in: | Cell and tissue research 2006-11, Vol.326 (2), p.239-248 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93 |
container_end_page | 248 |
container_issue | 2 |
container_start_page | 239 |
container_title | Cell and tissue research |
container_volume | 326 |
creator | Bruzzone, Roberto Dermietzel, Rolf |
description | Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that they carry out this role by taking advantage of the full complement of their functional properties. Thus, hemichannel activation may represent a key step in the initiation of Ca²⁺ waves that coordinate cell cycle events during early prenatal neurogenesis, whereas both hemichannels and/or gap junctions may control the division and migration of cohorts of precusor cells during late prenatal neurogenesis. Finally, the recent discovery that pannexins, a novel group of proteins prominently expressed in the brain, are able to form both hemichannels and gap-junction channels suggests that we need to seek more than just connexins with respect to these junctions. |
doi_str_mv | 10.1007/s00441-006-0287-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68879698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68879698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYMouq7-AV40ePBWnUmar5OI-AULHlTwFtI2XbvstmvSCv73ZumC4MXTMPB7jzfzCDlBuEQAdRUB8hwzAJkB0yqDHTLBnLMMtNK7ZAIcWKakfD8ghzEuADCX0uyTA5TaSJPLCbl-6cNQ9kPw1LUVrYe27JuupV1N525NF9s90qal_Yenlf_yy27dtHNaBNe0R2Svdsvoj7dzSt7u715vH7PZ88PT7c0sK7nGPlOal6JklQbGpNO1AWNyraUxnBVGoFSoGAoBDkShKiVUgZAzqLXhRnrDp-Ri9F2H7nPwsberJpZ-uXSt74ZopdYqnaT_BdFwkdKwBJ7_ARfdENp0hGXIlci1wgThCJWhizH42q5Ds3Lh2yLYTQd27MCmDuymAwtJc7o1HoqVr34V26cn4GwEatdZNw9NtG8vDFDA5js8ZfsB4nWHgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213754871</pqid></control><display><type>article</type><title>Structure and function of gap junctions in the developing brain</title><source>Springer Nature</source><creator>Bruzzone, Roberto ; Dermietzel, Rolf</creator><creatorcontrib>Bruzzone, Roberto ; Dermietzel, Rolf</creatorcontrib><description>Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that they carry out this role by taking advantage of the full complement of their functional properties. Thus, hemichannel activation may represent a key step in the initiation of Ca²⁺ waves that coordinate cell cycle events during early prenatal neurogenesis, whereas both hemichannels and/or gap junctions may control the division and migration of cohorts of precusor cells during late prenatal neurogenesis. Finally, the recent discovery that pannexins, a novel group of proteins prominently expressed in the brain, are able to form both hemichannels and gap-junction channels suggests that we need to seek more than just connexins with respect to these junctions.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/s00441-006-0287-0</identifier><identifier>PMID: 16896946</identifier><language>eng</language><publisher>Germany: Springer-Verlag</publisher><subject>Animals ; Brain ; Brain - embryology ; Brain - ultrastructure ; calcium ; Calcium Signaling - physiology ; Cell adhesion & migration ; Cell Communication - physiology ; Cell cycle ; Cell Cycle - physiology ; Cell division ; Cell Movement - physiology ; connexins ; functional properties ; gap junctions ; Gap Junctions - physiology ; Gap Junctions - ultrastructure ; Nerve Tissue Proteins - biosynthesis ; neurogenesis ; Neurons ; Organogenesis - physiology ; Prenatal development ; Proteins</subject><ispartof>Cell and tissue research, 2006-11, Vol.326 (2), p.239-248</ispartof><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93</citedby><cites>FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16896946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruzzone, Roberto</creatorcontrib><creatorcontrib>Dermietzel, Rolf</creatorcontrib><title>Structure and function of gap junctions in the developing brain</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><description>Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that they carry out this role by taking advantage of the full complement of their functional properties. Thus, hemichannel activation may represent a key step in the initiation of Ca²⁺ waves that coordinate cell cycle events during early prenatal neurogenesis, whereas both hemichannels and/or gap junctions may control the division and migration of cohorts of precusor cells during late prenatal neurogenesis. Finally, the recent discovery that pannexins, a novel group of proteins prominently expressed in the brain, are able to form both hemichannels and gap-junction channels suggests that we need to seek more than just connexins with respect to these junctions.</description><subject>Animals</subject><subject>Brain</subject><subject>Brain - embryology</subject><subject>Brain - ultrastructure</subject><subject>calcium</subject><subject>Calcium Signaling - physiology</subject><subject>Cell adhesion & migration</subject><subject>Cell Communication - physiology</subject><subject>Cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Cell division</subject><subject>Cell Movement - physiology</subject><subject>connexins</subject><subject>functional properties</subject><subject>gap junctions</subject><subject>Gap Junctions - physiology</subject><subject>Gap Junctions - ultrastructure</subject><subject>Nerve Tissue Proteins - biosynthesis</subject><subject>neurogenesis</subject><subject>Neurons</subject><subject>Organogenesis - physiology</subject><subject>Prenatal development</subject><subject>Proteins</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LxDAQxYMouq7-AV40ePBWnUmar5OI-AULHlTwFtI2XbvstmvSCv73ZumC4MXTMPB7jzfzCDlBuEQAdRUB8hwzAJkB0yqDHTLBnLMMtNK7ZAIcWKakfD8ghzEuADCX0uyTA5TaSJPLCbl-6cNQ9kPw1LUVrYe27JuupV1N525NF9s90qal_Yenlf_yy27dtHNaBNe0R2Svdsvoj7dzSt7u715vH7PZ88PT7c0sK7nGPlOal6JklQbGpNO1AWNyraUxnBVGoFSoGAoBDkShKiVUgZAzqLXhRnrDp-Ri9F2H7nPwsberJpZ-uXSt74ZopdYqnaT_BdFwkdKwBJ7_ARfdENp0hGXIlci1wgThCJWhizH42q5Ds3Lh2yLYTQd27MCmDuymAwtJc7o1HoqVr34V26cn4GwEatdZNw9NtG8vDFDA5js8ZfsB4nWHgg</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Bruzzone, Roberto</creator><creator>Dermietzel, Rolf</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20061101</creationdate><title>Structure and function of gap junctions in the developing brain</title><author>Bruzzone, Roberto ; Dermietzel, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Brain - embryology</topic><topic>Brain - ultrastructure</topic><topic>calcium</topic><topic>Calcium Signaling - physiology</topic><topic>Cell adhesion & migration</topic><topic>Cell Communication - physiology</topic><topic>Cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Cell division</topic><topic>Cell Movement - physiology</topic><topic>connexins</topic><topic>functional properties</topic><topic>gap junctions</topic><topic>Gap Junctions - physiology</topic><topic>Gap Junctions - ultrastructure</topic><topic>Nerve Tissue Proteins - biosynthesis</topic><topic>neurogenesis</topic><topic>Neurons</topic><topic>Organogenesis - physiology</topic><topic>Prenatal development</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruzzone, Roberto</creatorcontrib><creatorcontrib>Dermietzel, Rolf</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruzzone, Roberto</au><au>Dermietzel, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and function of gap junctions in the developing brain</atitle><jtitle>Cell and tissue research</jtitle><addtitle>Cell Tissue Res</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>326</volume><issue>2</issue><spage>239</spage><epage>248</epage><pages>239-248</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that they carry out this role by taking advantage of the full complement of their functional properties. Thus, hemichannel activation may represent a key step in the initiation of Ca²⁺ waves that coordinate cell cycle events during early prenatal neurogenesis, whereas both hemichannels and/or gap junctions may control the division and migration of cohorts of precusor cells during late prenatal neurogenesis. Finally, the recent discovery that pannexins, a novel group of proteins prominently expressed in the brain, are able to form both hemichannels and gap-junction channels suggests that we need to seek more than just connexins with respect to these junctions.</abstract><cop>Germany</cop><pub>Springer-Verlag</pub><pmid>16896946</pmid><doi>10.1007/s00441-006-0287-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-766X |
ispartof | Cell and tissue research, 2006-11, Vol.326 (2), p.239-248 |
issn | 0302-766X 1432-0878 |
language | eng |
recordid | cdi_proquest_miscellaneous_68879698 |
source | Springer Nature |
subjects | Animals Brain Brain - embryology Brain - ultrastructure calcium Calcium Signaling - physiology Cell adhesion & migration Cell Communication - physiology Cell cycle Cell Cycle - physiology Cell division Cell Movement - physiology connexins functional properties gap junctions Gap Junctions - physiology Gap Junctions - ultrastructure Nerve Tissue Proteins - biosynthesis neurogenesis Neurons Organogenesis - physiology Prenatal development Proteins |
title | Structure and function of gap junctions in the developing brain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20function%20of%20gap%20junctions%20in%20the%20developing%20brain&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Bruzzone,%20Roberto&rft.date=2006-11-01&rft.volume=326&rft.issue=2&rft.spage=239&rft.epage=248&rft.pages=239-248&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/s00441-006-0287-0&rft_dat=%3Cproquest_cross%3E68879698%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213754871&rft_id=info:pmid/16896946&rfr_iscdi=true |