Loading…

Structure and function of gap junctions in the developing brain

Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that...

Full description

Saved in:
Bibliographic Details
Published in:Cell and tissue research 2006-11, Vol.326 (2), p.239-248
Main Authors: Bruzzone, Roberto, Dermietzel, Rolf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93
cites cdi_FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93
container_end_page 248
container_issue 2
container_start_page 239
container_title Cell and tissue research
container_volume 326
creator Bruzzone, Roberto
Dermietzel, Rolf
description Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that they carry out this role by taking advantage of the full complement of their functional properties. Thus, hemichannel activation may represent a key step in the initiation of Ca²⁺ waves that coordinate cell cycle events during early prenatal neurogenesis, whereas both hemichannels and/or gap junctions may control the division and migration of cohorts of precusor cells during late prenatal neurogenesis. Finally, the recent discovery that pannexins, a novel group of proteins prominently expressed in the brain, are able to form both hemichannels and gap-junction channels suggests that we need to seek more than just connexins with respect to these junctions.
doi_str_mv 10.1007/s00441-006-0287-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68879698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68879698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYMouq7-AV40ePBWnUmar5OI-AULHlTwFtI2XbvstmvSCv73ZumC4MXTMPB7jzfzCDlBuEQAdRUB8hwzAJkB0yqDHTLBnLMMtNK7ZAIcWKakfD8ghzEuADCX0uyTA5TaSJPLCbl-6cNQ9kPw1LUVrYe27JuupV1N525NF9s90qal_Yenlf_yy27dtHNaBNe0R2Svdsvoj7dzSt7u715vH7PZ88PT7c0sK7nGPlOal6JklQbGpNO1AWNyraUxnBVGoFSoGAoBDkShKiVUgZAzqLXhRnrDp-Ri9F2H7nPwsberJpZ-uXSt74ZopdYqnaT_BdFwkdKwBJ7_ARfdENp0hGXIlci1wgThCJWhizH42q5Ds3Lh2yLYTQd27MCmDuymAwtJc7o1HoqVr34V26cn4GwEatdZNw9NtG8vDFDA5js8ZfsB4nWHgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213754871</pqid></control><display><type>article</type><title>Structure and function of gap junctions in the developing brain</title><source>Springer Nature</source><creator>Bruzzone, Roberto ; Dermietzel, Rolf</creator><creatorcontrib>Bruzzone, Roberto ; Dermietzel, Rolf</creatorcontrib><description>Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that they carry out this role by taking advantage of the full complement of their functional properties. Thus, hemichannel activation may represent a key step in the initiation of Ca²⁺ waves that coordinate cell cycle events during early prenatal neurogenesis, whereas both hemichannels and/or gap junctions may control the division and migration of cohorts of precusor cells during late prenatal neurogenesis. Finally, the recent discovery that pannexins, a novel group of proteins prominently expressed in the brain, are able to form both hemichannels and gap-junction channels suggests that we need to seek more than just connexins with respect to these junctions.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/s00441-006-0287-0</identifier><identifier>PMID: 16896946</identifier><language>eng</language><publisher>Germany: Springer-Verlag</publisher><subject>Animals ; Brain ; Brain - embryology ; Brain - ultrastructure ; calcium ; Calcium Signaling - physiology ; Cell adhesion &amp; migration ; Cell Communication - physiology ; Cell cycle ; Cell Cycle - physiology ; Cell division ; Cell Movement - physiology ; connexins ; functional properties ; gap junctions ; Gap Junctions - physiology ; Gap Junctions - ultrastructure ; Nerve Tissue Proteins - biosynthesis ; neurogenesis ; Neurons ; Organogenesis - physiology ; Prenatal development ; Proteins</subject><ispartof>Cell and tissue research, 2006-11, Vol.326 (2), p.239-248</ispartof><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93</citedby><cites>FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16896946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruzzone, Roberto</creatorcontrib><creatorcontrib>Dermietzel, Rolf</creatorcontrib><title>Structure and function of gap junctions in the developing brain</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><description>Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that they carry out this role by taking advantage of the full complement of their functional properties. Thus, hemichannel activation may represent a key step in the initiation of Ca²⁺ waves that coordinate cell cycle events during early prenatal neurogenesis, whereas both hemichannels and/or gap junctions may control the division and migration of cohorts of precusor cells during late prenatal neurogenesis. Finally, the recent discovery that pannexins, a novel group of proteins prominently expressed in the brain, are able to form both hemichannels and gap-junction channels suggests that we need to seek more than just connexins with respect to these junctions.</description><subject>Animals</subject><subject>Brain</subject><subject>Brain - embryology</subject><subject>Brain - ultrastructure</subject><subject>calcium</subject><subject>Calcium Signaling - physiology</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Communication - physiology</subject><subject>Cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Cell division</subject><subject>Cell Movement - physiology</subject><subject>connexins</subject><subject>functional properties</subject><subject>gap junctions</subject><subject>Gap Junctions - physiology</subject><subject>Gap Junctions - ultrastructure</subject><subject>Nerve Tissue Proteins - biosynthesis</subject><subject>neurogenesis</subject><subject>Neurons</subject><subject>Organogenesis - physiology</subject><subject>Prenatal development</subject><subject>Proteins</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LxDAQxYMouq7-AV40ePBWnUmar5OI-AULHlTwFtI2XbvstmvSCv73ZumC4MXTMPB7jzfzCDlBuEQAdRUB8hwzAJkB0yqDHTLBnLMMtNK7ZAIcWKakfD8ghzEuADCX0uyTA5TaSJPLCbl-6cNQ9kPw1LUVrYe27JuupV1N525NF9s90qal_Yenlf_yy27dtHNaBNe0R2Svdsvoj7dzSt7u715vH7PZ88PT7c0sK7nGPlOal6JklQbGpNO1AWNyraUxnBVGoFSoGAoBDkShKiVUgZAzqLXhRnrDp-Ri9F2H7nPwsberJpZ-uXSt74ZopdYqnaT_BdFwkdKwBJ7_ARfdENp0hGXIlci1wgThCJWhizH42q5Ds3Lh2yLYTQd27MCmDuymAwtJc7o1HoqVr34V26cn4GwEatdZNw9NtG8vDFDA5js8ZfsB4nWHgg</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Bruzzone, Roberto</creator><creator>Dermietzel, Rolf</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20061101</creationdate><title>Structure and function of gap junctions in the developing brain</title><author>Bruzzone, Roberto ; Dermietzel, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Brain - embryology</topic><topic>Brain - ultrastructure</topic><topic>calcium</topic><topic>Calcium Signaling - physiology</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Communication - physiology</topic><topic>Cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Cell division</topic><topic>Cell Movement - physiology</topic><topic>connexins</topic><topic>functional properties</topic><topic>gap junctions</topic><topic>Gap Junctions - physiology</topic><topic>Gap Junctions - ultrastructure</topic><topic>Nerve Tissue Proteins - biosynthesis</topic><topic>neurogenesis</topic><topic>Neurons</topic><topic>Organogenesis - physiology</topic><topic>Prenatal development</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruzzone, Roberto</creatorcontrib><creatorcontrib>Dermietzel, Rolf</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruzzone, Roberto</au><au>Dermietzel, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and function of gap junctions in the developing brain</atitle><jtitle>Cell and tissue research</jtitle><addtitle>Cell Tissue Res</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>326</volume><issue>2</issue><spage>239</spage><epage>248</epage><pages>239-248</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that they carry out this role by taking advantage of the full complement of their functional properties. Thus, hemichannel activation may represent a key step in the initiation of Ca²⁺ waves that coordinate cell cycle events during early prenatal neurogenesis, whereas both hemichannels and/or gap junctions may control the division and migration of cohorts of precusor cells during late prenatal neurogenesis. Finally, the recent discovery that pannexins, a novel group of proteins prominently expressed in the brain, are able to form both hemichannels and gap-junction channels suggests that we need to seek more than just connexins with respect to these junctions.</abstract><cop>Germany</cop><pub>Springer-Verlag</pub><pmid>16896946</pmid><doi>10.1007/s00441-006-0287-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-766X
ispartof Cell and tissue research, 2006-11, Vol.326 (2), p.239-248
issn 0302-766X
1432-0878
language eng
recordid cdi_proquest_miscellaneous_68879698
source Springer Nature
subjects Animals
Brain
Brain - embryology
Brain - ultrastructure
calcium
Calcium Signaling - physiology
Cell adhesion & migration
Cell Communication - physiology
Cell cycle
Cell Cycle - physiology
Cell division
Cell Movement - physiology
connexins
functional properties
gap junctions
Gap Junctions - physiology
Gap Junctions - ultrastructure
Nerve Tissue Proteins - biosynthesis
neurogenesis
Neurons
Organogenesis - physiology
Prenatal development
Proteins
title Structure and function of gap junctions in the developing brain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20function%20of%20gap%20junctions%20in%20the%20developing%20brain&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Bruzzone,%20Roberto&rft.date=2006-11-01&rft.volume=326&rft.issue=2&rft.spage=239&rft.epage=248&rft.pages=239-248&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/s00441-006-0287-0&rft_dat=%3Cproquest_cross%3E68879698%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-783c5c2d80226a8f909948869932b951671721550a05b7d757b10420f89396e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213754871&rft_id=info:pmid/16896946&rfr_iscdi=true