Loading…

Stochastic transition states: Reaction geometry amidst noise

Classical transition state theory (TST) is the cornerstone of reaction-rate theory. It postulates a partition of phase space into reactant and product regions, which are separated by a dividing surface that reactive trajectories must cross. In order not to overestimate the reaction rate, the dynamic...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2005-11, Vol.123 (20), p.204102-204102-14
Main Authors: Bartsch, Thomas, Uzer, T., Hernandez, Rigoberto
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-7801da49749ee6ebe8cfb48f7b29394969a222e4d1a99cf1f3fedd4972f97a8c3
cites cdi_FETCH-LOGICAL-c439t-7801da49749ee6ebe8cfb48f7b29394969a222e4d1a99cf1f3fedd4972f97a8c3
container_end_page 204102-14
container_issue 20
container_start_page 204102
container_title The Journal of chemical physics
container_volume 123
creator Bartsch, Thomas
Uzer, T.
Hernandez, Rigoberto
description Classical transition state theory (TST) is the cornerstone of reaction-rate theory. It postulates a partition of phase space into reactant and product regions, which are separated by a dividing surface that reactive trajectories must cross. In order not to overestimate the reaction rate, the dynamics must be free of recrossings of the dividing surface. This no-recrossing rule is difficult (and sometimes impossible) to enforce, however, when a chemical reaction takes place in a fluctuating environment such as a liquid. High-accuracy approximations to the rate are well known when the solvent forces are treated using stochastic representations, though again, exact no-recrossing surfaces have not been available. To generalize the exact limit of TST to reactive systems driven by noise, we introduce a time-dependent dividing surface that is stochastically moving in phase space, such that it is crossed once and only once by each transition path.
doi_str_mv 10.1063/1.2109827
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68888945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68888945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-7801da49749ee6ebe8cfb48f7b29394969a222e4d1a99cf1f3fedd4972f97a8c3</originalsourceid><addsrcrecordid>eNp10EtLAzEUhuEgiq3VhX9AZiW4GM2tmYmIIMUbFAQv65DJnGikM1Nz0kX_vaMd7MpsDoSHb_EScszoOaNKXLBzzqguebFDxoyWOi-UprtkTClnuVZUjcgB4iellBVc7pMRU2LKuJiOydVL6tyHxRRclqJtMaTQtRkmmwAvs2ew7vfjHboGUlxntgk1pqztAsIh2fN2gXA03Al5u7t9nT3k86f7x9nNPHdS6JQXJWW1lbqQGkBBBaXzlSx9UXEttNRKW845yJpZrZ1nXnio695zrwtbOjEhp5vdZey-VoDJNAEdLBa2hW6FRpX903Law7MNdLFDjODNMobGxrVh1PykMswMqXp7MoyuqgbqrRza9OB6A9CFPkdf4f-1bUXzV1F8A7aUeVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68888945</pqid></control><display><type>article</type><title>Stochastic transition states: Reaction geometry amidst noise</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Bartsch, Thomas ; Uzer, T. ; Hernandez, Rigoberto</creator><creatorcontrib>Bartsch, Thomas ; Uzer, T. ; Hernandez, Rigoberto</creatorcontrib><description>Classical transition state theory (TST) is the cornerstone of reaction-rate theory. It postulates a partition of phase space into reactant and product regions, which are separated by a dividing surface that reactive trajectories must cross. In order not to overestimate the reaction rate, the dynamics must be free of recrossings of the dividing surface. This no-recrossing rule is difficult (and sometimes impossible) to enforce, however, when a chemical reaction takes place in a fluctuating environment such as a liquid. High-accuracy approximations to the rate are well known when the solvent forces are treated using stochastic representations, though again, exact no-recrossing surfaces have not been available. To generalize the exact limit of TST to reactive systems driven by noise, we introduce a time-dependent dividing surface that is stochastically moving in phase space, such that it is crossed once and only once by each transition path.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2109827</identifier><identifier>PMID: 16351235</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2005-11, Vol.123 (20), p.204102-204102-14</ispartof><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-7801da49749ee6ebe8cfb48f7b29394969a222e4d1a99cf1f3fedd4972f97a8c3</citedby><cites>FETCH-LOGICAL-c439t-7801da49749ee6ebe8cfb48f7b29394969a222e4d1a99cf1f3fedd4972f97a8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,795,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16351235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartsch, Thomas</creatorcontrib><creatorcontrib>Uzer, T.</creatorcontrib><creatorcontrib>Hernandez, Rigoberto</creatorcontrib><title>Stochastic transition states: Reaction geometry amidst noise</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Classical transition state theory (TST) is the cornerstone of reaction-rate theory. It postulates a partition of phase space into reactant and product regions, which are separated by a dividing surface that reactive trajectories must cross. In order not to overestimate the reaction rate, the dynamics must be free of recrossings of the dividing surface. This no-recrossing rule is difficult (and sometimes impossible) to enforce, however, when a chemical reaction takes place in a fluctuating environment such as a liquid. High-accuracy approximations to the rate are well known when the solvent forces are treated using stochastic representations, though again, exact no-recrossing surfaces have not been available. To generalize the exact limit of TST to reactive systems driven by noise, we introduce a time-dependent dividing surface that is stochastically moving in phase space, such that it is crossed once and only once by each transition path.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEUhuEgiq3VhX9AZiW4GM2tmYmIIMUbFAQv65DJnGikM1Nz0kX_vaMd7MpsDoSHb_EScszoOaNKXLBzzqguebFDxoyWOi-UprtkTClnuVZUjcgB4iellBVc7pMRU2LKuJiOydVL6tyHxRRclqJtMaTQtRkmmwAvs2ew7vfjHboGUlxntgk1pqztAsIh2fN2gXA03Al5u7t9nT3k86f7x9nNPHdS6JQXJWW1lbqQGkBBBaXzlSx9UXEttNRKW845yJpZrZ1nXnio695zrwtbOjEhp5vdZey-VoDJNAEdLBa2hW6FRpX903Law7MNdLFDjODNMobGxrVh1PykMswMqXp7MoyuqgbqrRza9OB6A9CFPkdf4f-1bUXzV1F8A7aUeVg</recordid><startdate>20051122</startdate><enddate>20051122</enddate><creator>Bartsch, Thomas</creator><creator>Uzer, T.</creator><creator>Hernandez, Rigoberto</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051122</creationdate><title>Stochastic transition states: Reaction geometry amidst noise</title><author>Bartsch, Thomas ; Uzer, T. ; Hernandez, Rigoberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-7801da49749ee6ebe8cfb48f7b29394969a222e4d1a99cf1f3fedd4972f97a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartsch, Thomas</creatorcontrib><creatorcontrib>Uzer, T.</creatorcontrib><creatorcontrib>Hernandez, Rigoberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartsch, Thomas</au><au>Uzer, T.</au><au>Hernandez, Rigoberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic transition states: Reaction geometry amidst noise</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-11-22</date><risdate>2005</risdate><volume>123</volume><issue>20</issue><spage>204102</spage><epage>204102-14</epage><pages>204102-204102-14</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Classical transition state theory (TST) is the cornerstone of reaction-rate theory. It postulates a partition of phase space into reactant and product regions, which are separated by a dividing surface that reactive trajectories must cross. In order not to overestimate the reaction rate, the dynamics must be free of recrossings of the dividing surface. This no-recrossing rule is difficult (and sometimes impossible) to enforce, however, when a chemical reaction takes place in a fluctuating environment such as a liquid. High-accuracy approximations to the rate are well known when the solvent forces are treated using stochastic representations, though again, exact no-recrossing surfaces have not been available. To generalize the exact limit of TST to reactive systems driven by noise, we introduce a time-dependent dividing surface that is stochastically moving in phase space, such that it is crossed once and only once by each transition path.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>16351235</pmid><doi>10.1063/1.2109827</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2005-11, Vol.123 (20), p.204102-204102-14
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_68888945
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
title Stochastic transition states: Reaction geometry amidst noise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20transition%20states:%20Reaction%20geometry%20amidst%20noise&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bartsch,%20Thomas&rft.date=2005-11-22&rft.volume=123&rft.issue=20&rft.spage=204102&rft.epage=204102-14&rft.pages=204102-204102-14&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2109827&rft_dat=%3Cproquest_cross%3E68888945%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-7801da49749ee6ebe8cfb48f7b29394969a222e4d1a99cf1f3fedd4972f97a8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68888945&rft_id=info:pmid/16351235&rfr_iscdi=true