Loading…

Radiolysis of Confined Water: Hydrogen Production at a High Dose Rate

The production of molecular hydrogen in the radiolysis of dried or hydrated nanoporous controlled‐pore glasses (CPG) has been carefully studied using 10 MeV electron irraditation at high dose rate. In all cases, the H2 yield increases when the pore size decreases. Moreover, the yields measured in dr...

Full description

Saved in:
Bibliographic Details
Published in:Chemphyschem 2005-12, Vol.6 (12), p.2585-2596
Main Authors: Le Caër, Sophie, Rotureau, Patricia, Brunet, Francine, Charpentier, Thibault, Blain, Guillaume, Renault, Jean Philippe, Mialocq, Jean-Claude
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4775-3ab8353609775542e2e44d6d197ed59e1a2b6cbeba6ba2bcd8fee80f7e30196c3
cites cdi_FETCH-LOGICAL-c4775-3ab8353609775542e2e44d6d197ed59e1a2b6cbeba6ba2bcd8fee80f7e30196c3
container_end_page 2596
container_issue 12
container_start_page 2585
container_title Chemphyschem
container_volume 6
creator Le Caër, Sophie
Rotureau, Patricia
Brunet, Francine
Charpentier, Thibault
Blain, Guillaume
Renault, Jean Philippe
Mialocq, Jean-Claude
description The production of molecular hydrogen in the radiolysis of dried or hydrated nanoporous controlled‐pore glasses (CPG) has been carefully studied using 10 MeV electron irraditation at high dose rate. In all cases, the H2 yield increases when the pore size decreases. Moreover, the yields measured in dried materials are two orders of magnitude smaller than those obtained in hydrated glasses. This proves that the part of the H2 coming from the surface of the material is negligible in the hydrated case. Thus, the measured yields correspond to those of nanoconfined water. Moreover, these yields are not modified by the presence of potassium bromide, which is a hydroxyl radical scavenger. This experimental observation shows that the back reaction between H2 and HO. does not take place in such confined environments. These porous materials have been characterized before and after irradiation by means of Fourier‐transform infrared (FT‐IR) spectroscopy, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) techniques, which helps to understand the elementary processes taking place in this type of environment, especially the protective effect of water on the surface in the case of hydrated glasses. Trapped in a glass: The production of dihydrogen in mesoporous materials by water radiolysis under high dose rate irradiation (1.7 Gy ns−1 for a 10‐MeV electron beam) was investigated. The H2 production is presented in the figure for glasses of different pore sizes: 8 (▪), 25 (•), 50 (▴), 300 nm (▾), and it reflects the radiolysis of nanoconfined water.
doi_str_mv 10.1002/cphc.200500185
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68892549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68892549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4775-3ab8353609775542e2e44d6d197ed59e1a2b6cbeba6ba2bcd8fee80f7e30196c3</originalsourceid><addsrcrecordid>eNqFkM1v1DAQxS0EoqVw5Yh8gVsWf39wQ6HtIlWlKqAeLceetIZsvNhZwf73pNqo5cZp3ki_92b0EHpNyYoSwt6H7V1YMUIkIdTIJ-iYCm4brQR9umjBuDxCL2r9QQgxRNPn6IgqZoS16hidXvuY8rCvqeLc4zaPfRoh4hs_QfmA1_tY8i2M-KrkuAtTyiP2E_Z4nW7v8KdcAV_P5Ev0rPdDhVfLPEHfz06_tevm4sv55_bjRROE1rLhvjNcckXsvEnBgIEQUUVqNURpgXrWqdBB51U3yxBND2BIr4ETalXgJ-jdIXdb8q8d1MltUg0wDH6EvKtOGWOZFHYGVwcwlFxrgd5tS9r4sneUuPvi3H1x7qG42fBmSd51G4iP-NLUDLxdAF-DH_rix5DqI6c5lUbpmbMH7ncaYP-fs669Wrf_PtEcvKlO8OfB68tPNydr6W4uz93lV6nPmKHO8L9cxZT7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68892549</pqid></control><display><type>article</type><title>Radiolysis of Confined Water: Hydrogen Production at a High Dose Rate</title><source>Wiley</source><creator>Le Caër, Sophie ; Rotureau, Patricia ; Brunet, Francine ; Charpentier, Thibault ; Blain, Guillaume ; Renault, Jean Philippe ; Mialocq, Jean-Claude</creator><creatorcontrib>Le Caër, Sophie ; Rotureau, Patricia ; Brunet, Francine ; Charpentier, Thibault ; Blain, Guillaume ; Renault, Jean Philippe ; Mialocq, Jean-Claude</creatorcontrib><description>The production of molecular hydrogen in the radiolysis of dried or hydrated nanoporous controlled‐pore glasses (CPG) has been carefully studied using 10 MeV electron irraditation at high dose rate. In all cases, the H2 yield increases when the pore size decreases. Moreover, the yields measured in dried materials are two orders of magnitude smaller than those obtained in hydrated glasses. This proves that the part of the H2 coming from the surface of the material is negligible in the hydrated case. Thus, the measured yields correspond to those of nanoconfined water. Moreover, these yields are not modified by the presence of potassium bromide, which is a hydroxyl radical scavenger. This experimental observation shows that the back reaction between H2 and HO. does not take place in such confined environments. These porous materials have been characterized before and after irradiation by means of Fourier‐transform infrared (FT‐IR) spectroscopy, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) techniques, which helps to understand the elementary processes taking place in this type of environment, especially the protective effect of water on the surface in the case of hydrated glasses. Trapped in a glass: The production of dihydrogen in mesoporous materials by water radiolysis under high dose rate irradiation (1.7 Gy ns−1 for a 10‐MeV electron beam) was investigated. The H2 production is presented in the figure for glasses of different pore sizes: 8 (▪), 25 (•), 50 (▴), 300 nm (▾), and it reflects the radiolysis of nanoconfined water.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.200500185</identifier><identifier>PMID: 16284996</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; glasses ; hydrogen ; mesoporous materials ; Physical chemistry of induced reactions (with radiations, particles and ultrasonics) ; Porous materials ; Radiation chemistry ; radiolysis ; water chemistry</subject><ispartof>Chemphyschem, 2005-12, Vol.6 (12), p.2585-2596</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4775-3ab8353609775542e2e44d6d197ed59e1a2b6cbeba6ba2bcd8fee80f7e30196c3</citedby><cites>FETCH-LOGICAL-c4775-3ab8353609775542e2e44d6d197ed59e1a2b6cbeba6ba2bcd8fee80f7e30196c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17315867$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16284996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Caër, Sophie</creatorcontrib><creatorcontrib>Rotureau, Patricia</creatorcontrib><creatorcontrib>Brunet, Francine</creatorcontrib><creatorcontrib>Charpentier, Thibault</creatorcontrib><creatorcontrib>Blain, Guillaume</creatorcontrib><creatorcontrib>Renault, Jean Philippe</creatorcontrib><creatorcontrib>Mialocq, Jean-Claude</creatorcontrib><title>Radiolysis of Confined Water: Hydrogen Production at a High Dose Rate</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>The production of molecular hydrogen in the radiolysis of dried or hydrated nanoporous controlled‐pore glasses (CPG) has been carefully studied using 10 MeV electron irraditation at high dose rate. In all cases, the H2 yield increases when the pore size decreases. Moreover, the yields measured in dried materials are two orders of magnitude smaller than those obtained in hydrated glasses. This proves that the part of the H2 coming from the surface of the material is negligible in the hydrated case. Thus, the measured yields correspond to those of nanoconfined water. Moreover, these yields are not modified by the presence of potassium bromide, which is a hydroxyl radical scavenger. This experimental observation shows that the back reaction between H2 and HO. does not take place in such confined environments. These porous materials have been characterized before and after irradiation by means of Fourier‐transform infrared (FT‐IR) spectroscopy, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) techniques, which helps to understand the elementary processes taking place in this type of environment, especially the protective effect of water on the surface in the case of hydrated glasses. Trapped in a glass: The production of dihydrogen in mesoporous materials by water radiolysis under high dose rate irradiation (1.7 Gy ns−1 for a 10‐MeV electron beam) was investigated. The H2 production is presented in the figure for glasses of different pore sizes: 8 (▪), 25 (•), 50 (▴), 300 nm (▾), and it reflects the radiolysis of nanoconfined water.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>glasses</subject><subject>hydrogen</subject><subject>mesoporous materials</subject><subject>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</subject><subject>Porous materials</subject><subject>Radiation chemistry</subject><subject>radiolysis</subject><subject>water chemistry</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkM1v1DAQxS0EoqVw5Yh8gVsWf39wQ6HtIlWlKqAeLceetIZsvNhZwf73pNqo5cZp3ki_92b0EHpNyYoSwt6H7V1YMUIkIdTIJ-iYCm4brQR9umjBuDxCL2r9QQgxRNPn6IgqZoS16hidXvuY8rCvqeLc4zaPfRoh4hs_QfmA1_tY8i2M-KrkuAtTyiP2E_Z4nW7v8KdcAV_P5Ev0rPdDhVfLPEHfz06_tevm4sv55_bjRROE1rLhvjNcckXsvEnBgIEQUUVqNURpgXrWqdBB51U3yxBND2BIr4ETalXgJ-jdIXdb8q8d1MltUg0wDH6EvKtOGWOZFHYGVwcwlFxrgd5tS9r4sneUuPvi3H1x7qG42fBmSd51G4iP-NLUDLxdAF-DH_rix5DqI6c5lUbpmbMH7ncaYP-fs669Wrf_PtEcvKlO8OfB68tPNydr6W4uz93lV6nPmKHO8L9cxZT7</recordid><startdate>20051209</startdate><enddate>20051209</enddate><creator>Le Caër, Sophie</creator><creator>Rotureau, Patricia</creator><creator>Brunet, Francine</creator><creator>Charpentier, Thibault</creator><creator>Blain, Guillaume</creator><creator>Renault, Jean Philippe</creator><creator>Mialocq, Jean-Claude</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051209</creationdate><title>Radiolysis of Confined Water: Hydrogen Production at a High Dose Rate</title><author>Le Caër, Sophie ; Rotureau, Patricia ; Brunet, Francine ; Charpentier, Thibault ; Blain, Guillaume ; Renault, Jean Philippe ; Mialocq, Jean-Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4775-3ab8353609775542e2e44d6d197ed59e1a2b6cbeba6ba2bcd8fee80f7e30196c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>glasses</topic><topic>hydrogen</topic><topic>mesoporous materials</topic><topic>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</topic><topic>Porous materials</topic><topic>Radiation chemistry</topic><topic>radiolysis</topic><topic>water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Caër, Sophie</creatorcontrib><creatorcontrib>Rotureau, Patricia</creatorcontrib><creatorcontrib>Brunet, Francine</creatorcontrib><creatorcontrib>Charpentier, Thibault</creatorcontrib><creatorcontrib>Blain, Guillaume</creatorcontrib><creatorcontrib>Renault, Jean Philippe</creatorcontrib><creatorcontrib>Mialocq, Jean-Claude</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Caër, Sophie</au><au>Rotureau, Patricia</au><au>Brunet, Francine</au><au>Charpentier, Thibault</au><au>Blain, Guillaume</au><au>Renault, Jean Philippe</au><au>Mialocq, Jean-Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiolysis of Confined Water: Hydrogen Production at a High Dose Rate</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2005-12-09</date><risdate>2005</risdate><volume>6</volume><issue>12</issue><spage>2585</spage><epage>2596</epage><pages>2585-2596</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>The production of molecular hydrogen in the radiolysis of dried or hydrated nanoporous controlled‐pore glasses (CPG) has been carefully studied using 10 MeV electron irraditation at high dose rate. In all cases, the H2 yield increases when the pore size decreases. Moreover, the yields measured in dried materials are two orders of magnitude smaller than those obtained in hydrated glasses. This proves that the part of the H2 coming from the surface of the material is negligible in the hydrated case. Thus, the measured yields correspond to those of nanoconfined water. Moreover, these yields are not modified by the presence of potassium bromide, which is a hydroxyl radical scavenger. This experimental observation shows that the back reaction between H2 and HO. does not take place in such confined environments. These porous materials have been characterized before and after irradiation by means of Fourier‐transform infrared (FT‐IR) spectroscopy, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) techniques, which helps to understand the elementary processes taking place in this type of environment, especially the protective effect of water on the surface in the case of hydrated glasses. Trapped in a glass: The production of dihydrogen in mesoporous materials by water radiolysis under high dose rate irradiation (1.7 Gy ns−1 for a 10‐MeV electron beam) was investigated. The H2 production is presented in the figure for glasses of different pore sizes: 8 (▪), 25 (•), 50 (▴), 300 nm (▾), and it reflects the radiolysis of nanoconfined water.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>16284996</pmid><doi>10.1002/cphc.200500185</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2005-12, Vol.6 (12), p.2585-2596
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_68892549
source Wiley
subjects Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
glasses
hydrogen
mesoporous materials
Physical chemistry of induced reactions (with radiations, particles and ultrasonics)
Porous materials
Radiation chemistry
radiolysis
water chemistry
title Radiolysis of Confined Water: Hydrogen Production at a High Dose Rate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiolysis%20of%20Confined%20Water:%20Hydrogen%20Production%20at%20a%20High%20Dose%20Rate&rft.jtitle=Chemphyschem&rft.au=Le%20Ca%C3%ABr,%20Sophie&rft.date=2005-12-09&rft.volume=6&rft.issue=12&rft.spage=2585&rft.epage=2596&rft.pages=2585-2596&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.200500185&rft_dat=%3Cproquest_cross%3E68892549%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4775-3ab8353609775542e2e44d6d197ed59e1a2b6cbeba6ba2bcd8fee80f7e30196c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68892549&rft_id=info:pmid/16284996&rfr_iscdi=true