Loading…
Controlling the Growth of Single Crystalline Nanoribbons of Copper Tetracyanoquinodimethane for the Fabrication of Devices and Device Arrays
In this paper, (1) a simple and controllable method to synthesize single crystalline nanoribbons of CuTCNQ in a large area was demonstrated by using a physical and chemical vapor combined deposition technique. (2) Nanoribbons synthesized by this method were identified to belong to phase I. (3) Devic...
Saved in:
Published in: | Journal of the American Chemical Society 2006-10, Vol.128 (39), p.12917-12922 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, (1) a simple and controllable method to synthesize single crystalline nanoribbons of CuTCNQ in a large area was demonstrated by using a physical and chemical vapor combined deposition technique. (2) Nanoribbons synthesized by this method were identified to belong to phase I. (3) Devices and device arrays of nanoribbons were in situ fabricated by this method using gap electrodes and gap electrode arrays. (4) Current−voltage characteristics of crystalline devices and device arrays of nanoribbons exhibited semiconductor properties, and this conclusion was further confirmed by the results of devices based on an individual nanoribbon or microribbon of CuTCNQ (phase I). The controllable synthesis of nanoribbons for the in situ fabrication of crystalline nanodevices and device arrays will be attractive for nanoelectronics. Moreover, semiconductor current−voltage characteristics of the nanoribbons will be beneficial to the understanding of CuTCNQ. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja0636183 |