Loading…
Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”
Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is...
Saved in:
Published in: | The American naturalist 2006-10, Vol.168 (4), p.512-520 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43 |
container_end_page | 520 |
container_issue | 4 |
container_start_page | 512 |
container_title | The American naturalist |
container_volume | 168 |
creator | Frazier, M. R. Huey, Raymond B. Berrigan, David |
description | Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is debated. If such adaptations are fully compensatory, then temperature‐dependent processes (e.g., digestion rate, population growth rate) of cold‐adapted species will match those of warm‐adapted species when each is measured at its own optimal temperature. Here we show that cold‐adapted insect species have much lower maximum rates of population growth than do warm‐adapted species, even when we control for phylogenetic relatedness. This pattern also holds when we use a structural‐equation model to analyze alternative hypotheses that might otherwise explain this correlation. Thus, although physiological adaptations enable some insects to survive and reproduce at low temperatures, these adaptations do not overcome the “tyranny” of thermodynamics, at least for rates of population increase. Indeed, the sensitivity of population growth rates of insects to temperature is even greater than predicted by a recent thermodynamic model. Our findings suggest that adaptation to temperature inevitably alters the population dynamics of insects. This result has broad evolutionary and ecological consequences. |
doi_str_mv | 10.1086/506977 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68898482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/506977</jstor_id><sourcerecordid>10.1086/506977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43</originalsourceid><addsrcrecordid>eNqF0ctKJDEUBuAgivZ4eQKR4GJ2pbknNTttvDQIiigui1T6FF1NVaVNUoo7H2Tm5XwSS7tRmI2rkOTj5xx-hPYoOaLEqGNJVK71GhpRyXUmOePraEQI4RmhQm-hXzHOh2sucrmJtqgmRDDGRsjezSC0fvrS2bZ2EY99F1OwdRdxmgE-e_JNn2rfYV_hSRfBJXzjF31jPx8vgn9OM3xrE8Q_-O3174MNLQQ8ifgUUoLw9vpvB21Utomwuzq30f352d34Mru6vpiMT64yN0ySMmXLCljJOde5I9oZShSrQHJwpBJsqqVhAFOnVSWF0TIXpdKqtFxRYaQVfBv9XuYugn_sIaairaODprEd-D4WypjcCMN-hDTnORXcDPDwPzj3feiGJQZjtNCM0e80F3yMAapiEerWhpeCkuKjmmJZzQAPVml92cL0m626GMD-Esxj8uHrnxvNhRD8HdkBklE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198747221</pqid></control><display><type>article</type><title>Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Frazier, M. R. ; Huey, Raymond B. ; Berrigan, David</creator><contributor>Associate Editor and Jonathan B. Losos</contributor><creatorcontrib>Frazier, M. R. ; Huey, Raymond B. ; Berrigan, David ; Associate Editor and Jonathan B. Losos</creatorcontrib><description>Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is debated. If such adaptations are fully compensatory, then temperature‐dependent processes (e.g., digestion rate, population growth rate) of cold‐adapted species will match those of warm‐adapted species when each is measured at its own optimal temperature. Here we show that cold‐adapted insect species have much lower maximum rates of population growth than do warm‐adapted species, even when we control for phylogenetic relatedness. This pattern also holds when we use a structural‐equation model to analyze alternative hypotheses that might otherwise explain this correlation. Thus, although physiological adaptations enable some insects to survive and reproduce at low temperatures, these adaptations do not overcome the “tyranny” of thermodynamics, at least for rates of population increase. Indeed, the sensitivity of population growth rates of insects to temperature is even greater than predicted by a recent thermodynamic model. Our findings suggest that adaptation to temperature inevitably alters the population dynamics of insects. This result has broad evolutionary and ecological consequences.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/506977</identifier><identifier>PMID: 17004222</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>United States: The University of Chicago Press</publisher><subject>Adaptation, Physiological ; Animal populations ; Animals ; Biochemistry ; Biological adaptation ; Body temperature ; Ecology ; Evolution ; Insect physiology ; Insecta ; Insecta - physiology ; Insects ; Modeling ; Models, Biological ; Phylogeny ; Population Growth ; Population growth rate ; Seasons ; Species Specificity ; Temperature ; Temperature effects ; Thermodynamics</subject><ispartof>The American naturalist, 2006-10, Vol.168 (4), p.512-520</ispartof><rights>2006 by The University of Chicago.</rights><rights>Copyright University of Chicago, acting through its Press Oct 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43</citedby><cites>FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17004222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Associate Editor and Jonathan B. Losos</contributor><creatorcontrib>Frazier, M. R.</creatorcontrib><creatorcontrib>Huey, Raymond B.</creatorcontrib><creatorcontrib>Berrigan, David</creatorcontrib><title>Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is debated. If such adaptations are fully compensatory, then temperature‐dependent processes (e.g., digestion rate, population growth rate) of cold‐adapted species will match those of warm‐adapted species when each is measured at its own optimal temperature. Here we show that cold‐adapted insect species have much lower maximum rates of population growth than do warm‐adapted species, even when we control for phylogenetic relatedness. This pattern also holds when we use a structural‐equation model to analyze alternative hypotheses that might otherwise explain this correlation. Thus, although physiological adaptations enable some insects to survive and reproduce at low temperatures, these adaptations do not overcome the “tyranny” of thermodynamics, at least for rates of population increase. Indeed, the sensitivity of population growth rates of insects to temperature is even greater than predicted by a recent thermodynamic model. Our findings suggest that adaptation to temperature inevitably alters the population dynamics of insects. This result has broad evolutionary and ecological consequences.</description><subject>Adaptation, Physiological</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological adaptation</subject><subject>Body temperature</subject><subject>Ecology</subject><subject>Evolution</subject><subject>Insect physiology</subject><subject>Insecta</subject><subject>Insecta - physiology</subject><subject>Insects</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Phylogeny</subject><subject>Population Growth</subject><subject>Population growth rate</subject><subject>Seasons</subject><subject>Species Specificity</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermodynamics</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0ctKJDEUBuAgivZ4eQKR4GJ2pbknNTttvDQIiigui1T6FF1NVaVNUoo7H2Tm5XwSS7tRmI2rkOTj5xx-hPYoOaLEqGNJVK71GhpRyXUmOePraEQI4RmhQm-hXzHOh2sucrmJtqgmRDDGRsjezSC0fvrS2bZ2EY99F1OwdRdxmgE-e_JNn2rfYV_hSRfBJXzjF31jPx8vgn9OM3xrE8Q_-O3174MNLQQ8ifgUUoLw9vpvB21Utomwuzq30f352d34Mru6vpiMT64yN0ySMmXLCljJOde5I9oZShSrQHJwpBJsqqVhAFOnVSWF0TIXpdKqtFxRYaQVfBv9XuYugn_sIaairaODprEd-D4WypjcCMN-hDTnORXcDPDwPzj3feiGJQZjtNCM0e80F3yMAapiEerWhpeCkuKjmmJZzQAPVml92cL0m626GMD-Esxj8uHrnxvNhRD8HdkBklE</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Frazier, M. R.</creator><creator>Huey, Raymond B.</creator><creator>Berrigan, David</creator><general>The University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope><scope>7X8</scope></search><sort><creationdate>20061001</creationdate><title>Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”</title><author>Frazier, M. R. ; Huey, Raymond B. ; Berrigan, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptation, Physiological</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological adaptation</topic><topic>Body temperature</topic><topic>Ecology</topic><topic>Evolution</topic><topic>Insect physiology</topic><topic>Insecta</topic><topic>Insecta - physiology</topic><topic>Insects</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Phylogeny</topic><topic>Population Growth</topic><topic>Population growth rate</topic><topic>Seasons</topic><topic>Species Specificity</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frazier, M. R.</creatorcontrib><creatorcontrib>Huey, Raymond B.</creatorcontrib><creatorcontrib>Berrigan, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frazier, M. R.</au><au>Huey, Raymond B.</au><au>Berrigan, David</au><au>Associate Editor and Jonathan B. Losos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>168</volume><issue>4</issue><spage>512</spage><epage>520</epage><pages>512-520</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is debated. If such adaptations are fully compensatory, then temperature‐dependent processes (e.g., digestion rate, population growth rate) of cold‐adapted species will match those of warm‐adapted species when each is measured at its own optimal temperature. Here we show that cold‐adapted insect species have much lower maximum rates of population growth than do warm‐adapted species, even when we control for phylogenetic relatedness. This pattern also holds when we use a structural‐equation model to analyze alternative hypotheses that might otherwise explain this correlation. Thus, although physiological adaptations enable some insects to survive and reproduce at low temperatures, these adaptations do not overcome the “tyranny” of thermodynamics, at least for rates of population increase. Indeed, the sensitivity of population growth rates of insects to temperature is even greater than predicted by a recent thermodynamic model. Our findings suggest that adaptation to temperature inevitably alters the population dynamics of insects. This result has broad evolutionary and ecological consequences.</abstract><cop>United States</cop><pub>The University of Chicago Press</pub><pmid>17004222</pmid><doi>10.1086/506977</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0147 |
ispartof | The American naturalist, 2006-10, Vol.168 (4), p.512-520 |
issn | 0003-0147 1537-5323 |
language | eng |
recordid | cdi_proquest_miscellaneous_68898482 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Adaptation, Physiological Animal populations Animals Biochemistry Biological adaptation Body temperature Ecology Evolution Insect physiology Insecta Insecta - physiology Insects Modeling Models, Biological Phylogeny Population Growth Population growth rate Seasons Species Specificity Temperature Temperature effects Thermodynamics |
title | Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better” |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20Constrains%20the%20Evolution%20of%20Insect%20Population%20Growth%20Rates:%20%E2%80%9CWarmer%20Is%20Better%E2%80%9D&rft.jtitle=The%20American%20naturalist&rft.au=Frazier,%20M.%C2%A0R.&rft.date=2006-10-01&rft.volume=168&rft.issue=4&rft.spage=512&rft.epage=520&rft.pages=512-520&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/506977&rft_dat=%3Cjstor_proqu%3E10.1086/506977%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198747221&rft_id=info:pmid/17004222&rft_jstor_id=10.1086/506977&rfr_iscdi=true |