Loading…

Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”

Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is...

Full description

Saved in:
Bibliographic Details
Published in:The American naturalist 2006-10, Vol.168 (4), p.512-520
Main Authors: Frazier, M. R., Huey, Raymond B., Berrigan, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43
cites cdi_FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43
container_end_page 520
container_issue 4
container_start_page 512
container_title The American naturalist
container_volume 168
creator Frazier, M. R.
Huey, Raymond B.
Berrigan, David
description Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is debated. If such adaptations are fully compensatory, then temperature‐dependent processes (e.g., digestion rate, population growth rate) of cold‐adapted species will match those of warm‐adapted species when each is measured at its own optimal temperature. Here we show that cold‐adapted insect species have much lower maximum rates of population growth than do warm‐adapted species, even when we control for phylogenetic relatedness. This pattern also holds when we use a structural‐equation model to analyze alternative hypotheses that might otherwise explain this correlation. Thus, although physiological adaptations enable some insects to survive and reproduce at low temperatures, these adaptations do not overcome the “tyranny” of thermodynamics, at least for rates of population increase. Indeed, the sensitivity of population growth rates of insects to temperature is even greater than predicted by a recent thermodynamic model. Our findings suggest that adaptation to temperature inevitably alters the population dynamics of insects. This result has broad evolutionary and ecological consequences.
doi_str_mv 10.1086/506977
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68898482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/506977</jstor_id><sourcerecordid>10.1086/506977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43</originalsourceid><addsrcrecordid>eNqF0ctKJDEUBuAgivZ4eQKR4GJ2pbknNTttvDQIiigui1T6FF1NVaVNUoo7H2Tm5XwSS7tRmI2rkOTj5xx-hPYoOaLEqGNJVK71GhpRyXUmOePraEQI4RmhQm-hXzHOh2sucrmJtqgmRDDGRsjezSC0fvrS2bZ2EY99F1OwdRdxmgE-e_JNn2rfYV_hSRfBJXzjF31jPx8vgn9OM3xrE8Q_-O3174MNLQQ8ifgUUoLw9vpvB21Utomwuzq30f352d34Mru6vpiMT64yN0ySMmXLCljJOde5I9oZShSrQHJwpBJsqqVhAFOnVSWF0TIXpdKqtFxRYaQVfBv9XuYugn_sIaairaODprEd-D4WypjcCMN-hDTnORXcDPDwPzj3feiGJQZjtNCM0e80F3yMAapiEerWhpeCkuKjmmJZzQAPVml92cL0m626GMD-Esxj8uHrnxvNhRD8HdkBklE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198747221</pqid></control><display><type>article</type><title>Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Frazier, M. R. ; Huey, Raymond B. ; Berrigan, David</creator><contributor>Associate Editor and Jonathan B. Losos</contributor><creatorcontrib>Frazier, M. R. ; Huey, Raymond B. ; Berrigan, David ; Associate Editor and Jonathan B. Losos</creatorcontrib><description>Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is debated. If such adaptations are fully compensatory, then temperature‐dependent processes (e.g., digestion rate, population growth rate) of cold‐adapted species will match those of warm‐adapted species when each is measured at its own optimal temperature. Here we show that cold‐adapted insect species have much lower maximum rates of population growth than do warm‐adapted species, even when we control for phylogenetic relatedness. This pattern also holds when we use a structural‐equation model to analyze alternative hypotheses that might otherwise explain this correlation. Thus, although physiological adaptations enable some insects to survive and reproduce at low temperatures, these adaptations do not overcome the “tyranny” of thermodynamics, at least for rates of population increase. Indeed, the sensitivity of population growth rates of insects to temperature is even greater than predicted by a recent thermodynamic model. Our findings suggest that adaptation to temperature inevitably alters the population dynamics of insects. This result has broad evolutionary and ecological consequences.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/506977</identifier><identifier>PMID: 17004222</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>United States: The University of Chicago Press</publisher><subject>Adaptation, Physiological ; Animal populations ; Animals ; Biochemistry ; Biological adaptation ; Body temperature ; Ecology ; Evolution ; Insect physiology ; Insecta ; Insecta - physiology ; Insects ; Modeling ; Models, Biological ; Phylogeny ; Population Growth ; Population growth rate ; Seasons ; Species Specificity ; Temperature ; Temperature effects ; Thermodynamics</subject><ispartof>The American naturalist, 2006-10, Vol.168 (4), p.512-520</ispartof><rights>2006 by The University of Chicago.</rights><rights>Copyright University of Chicago, acting through its Press Oct 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43</citedby><cites>FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17004222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Associate Editor and Jonathan B. Losos</contributor><creatorcontrib>Frazier, M. R.</creatorcontrib><creatorcontrib>Huey, Raymond B.</creatorcontrib><creatorcontrib>Berrigan, David</creatorcontrib><title>Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is debated. If such adaptations are fully compensatory, then temperature‐dependent processes (e.g., digestion rate, population growth rate) of cold‐adapted species will match those of warm‐adapted species when each is measured at its own optimal temperature. Here we show that cold‐adapted insect species have much lower maximum rates of population growth than do warm‐adapted species, even when we control for phylogenetic relatedness. This pattern also holds when we use a structural‐equation model to analyze alternative hypotheses that might otherwise explain this correlation. Thus, although physiological adaptations enable some insects to survive and reproduce at low temperatures, these adaptations do not overcome the “tyranny” of thermodynamics, at least for rates of population increase. Indeed, the sensitivity of population growth rates of insects to temperature is even greater than predicted by a recent thermodynamic model. Our findings suggest that adaptation to temperature inevitably alters the population dynamics of insects. This result has broad evolutionary and ecological consequences.</description><subject>Adaptation, Physiological</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological adaptation</subject><subject>Body temperature</subject><subject>Ecology</subject><subject>Evolution</subject><subject>Insect physiology</subject><subject>Insecta</subject><subject>Insecta - physiology</subject><subject>Insects</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Phylogeny</subject><subject>Population Growth</subject><subject>Population growth rate</subject><subject>Seasons</subject><subject>Species Specificity</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermodynamics</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0ctKJDEUBuAgivZ4eQKR4GJ2pbknNTttvDQIiigui1T6FF1NVaVNUoo7H2Tm5XwSS7tRmI2rkOTj5xx-hPYoOaLEqGNJVK71GhpRyXUmOePraEQI4RmhQm-hXzHOh2sucrmJtqgmRDDGRsjezSC0fvrS2bZ2EY99F1OwdRdxmgE-e_JNn2rfYV_hSRfBJXzjF31jPx8vgn9OM3xrE8Q_-O3174MNLQQ8ifgUUoLw9vpvB21Utomwuzq30f352d34Mru6vpiMT64yN0ySMmXLCljJOde5I9oZShSrQHJwpBJsqqVhAFOnVSWF0TIXpdKqtFxRYaQVfBv9XuYugn_sIaairaODprEd-D4WypjcCMN-hDTnORXcDPDwPzj3feiGJQZjtNCM0e80F3yMAapiEerWhpeCkuKjmmJZzQAPVml92cL0m626GMD-Esxj8uHrnxvNhRD8HdkBklE</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Frazier, M. R.</creator><creator>Huey, Raymond B.</creator><creator>Berrigan, David</creator><general>The University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope><scope>7X8</scope></search><sort><creationdate>20061001</creationdate><title>Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”</title><author>Frazier, M. R. ; Huey, Raymond B. ; Berrigan, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptation, Physiological</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological adaptation</topic><topic>Body temperature</topic><topic>Ecology</topic><topic>Evolution</topic><topic>Insect physiology</topic><topic>Insecta</topic><topic>Insecta - physiology</topic><topic>Insects</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Phylogeny</topic><topic>Population Growth</topic><topic>Population growth rate</topic><topic>Seasons</topic><topic>Species Specificity</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frazier, M. R.</creatorcontrib><creatorcontrib>Huey, Raymond B.</creatorcontrib><creatorcontrib>Berrigan, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frazier, M. R.</au><au>Huey, Raymond B.</au><au>Berrigan, David</au><au>Associate Editor and Jonathan B. Losos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>168</volume><issue>4</issue><spage>512</spage><epage>520</epage><pages>512-520</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is debated. If such adaptations are fully compensatory, then temperature‐dependent processes (e.g., digestion rate, population growth rate) of cold‐adapted species will match those of warm‐adapted species when each is measured at its own optimal temperature. Here we show that cold‐adapted insect species have much lower maximum rates of population growth than do warm‐adapted species, even when we control for phylogenetic relatedness. This pattern also holds when we use a structural‐equation model to analyze alternative hypotheses that might otherwise explain this correlation. Thus, although physiological adaptations enable some insects to survive and reproduce at low temperatures, these adaptations do not overcome the “tyranny” of thermodynamics, at least for rates of population increase. Indeed, the sensitivity of population growth rates of insects to temperature is even greater than predicted by a recent thermodynamic model. Our findings suggest that adaptation to temperature inevitably alters the population dynamics of insects. This result has broad evolutionary and ecological consequences.</abstract><cop>United States</cop><pub>The University of Chicago Press</pub><pmid>17004222</pmid><doi>10.1086/506977</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-0147
ispartof The American naturalist, 2006-10, Vol.168 (4), p.512-520
issn 0003-0147
1537-5323
language eng
recordid cdi_proquest_miscellaneous_68898482
source JSTOR Archival Journals and Primary Sources Collection
subjects Adaptation, Physiological
Animal populations
Animals
Biochemistry
Biological adaptation
Body temperature
Ecology
Evolution
Insect physiology
Insecta
Insecta - physiology
Insects
Modeling
Models, Biological
Phylogeny
Population Growth
Population growth rate
Seasons
Species Specificity
Temperature
Temperature effects
Thermodynamics
title Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better”
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20Constrains%20the%20Evolution%20of%20Insect%20Population%20Growth%20Rates:%20%E2%80%9CWarmer%20Is%20Better%E2%80%9D&rft.jtitle=The%20American%20naturalist&rft.au=Frazier,%20M.%C2%A0R.&rft.date=2006-10-01&rft.volume=168&rft.issue=4&rft.spage=512&rft.epage=520&rft.pages=512-520&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/506977&rft_dat=%3Cjstor_proqu%3E10.1086/506977%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-6abfe2b33379c07c81062fe53ec0f42d7582eedc76f5487594b676ba361485a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198747221&rft_id=info:pmid/17004222&rft_jstor_id=10.1086/506977&rfr_iscdi=true