Loading…

Attributable risk function in the proportional hazards model for censored time-to-event

Time-to-event endpoints are often used in clinical and epidemiological studies to evaluate disease association with hazardous exposures. In the statistical literature of time-to-event analysis, such association is usually measured by the hazard ratio in the proportional hazards model. In public heal...

Full description

Saved in:
Bibliographic Details
Published in:Biostatistics (Oxford, England) England), 2006-10, Vol.7 (4), p.515-529
Main Authors: Chen, Ying Qing, Hu, Chengcheng, Wang, Yan
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-a61df59b9df0d25a471e912f4e8abbb88a38f2e91d209184770f8944b7e4629a3
cites
container_end_page 529
container_issue 4
container_start_page 515
container_title Biostatistics (Oxford, England)
container_volume 7
creator Chen, Ying Qing
Hu, Chengcheng
Wang, Yan
description Time-to-event endpoints are often used in clinical and epidemiological studies to evaluate disease association with hazardous exposures. In the statistical literature of time-to-event analysis, such association is usually measured by the hazard ratio in the proportional hazards model. In public health, it is also of important interest to assess the excess risk attributable to an exposure in a given population. In this article, we extend the notion of 'population attributable fraction' for the binary outcomes to the attributable risk function for the event times in prospective studies. A simple estimator of the time-varying attributable risk function is proposed under the proportional hazards model. Its inference procedures are established. Monte-Carlo simulation studies are conducted to evaluate its validity and performance. The proposed methodology is motivated and demonstrated by the data collected in a multicenter acquired immunodeficiency syndrome (AIDS) cohort study to estimate the attributable risk of human immunodeficiency virus type 1 (HIV-1) infections due to several potential risk factors.
doi_str_mv 10.1093/biostatistics/kxj023
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68898803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19874553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-a61df59b9df0d25a471e912f4e8abbb88a38f2e91d209184770f8944b7e4629a3</originalsourceid><addsrcrecordid>eNqFkc1r3DAQxUVJaD7a_6AEkUNu7upjbEnHEJK0EMglIUcj2SOijW1tJbmk_evr7S6U9JLTDI_fe8zwCPnC2VfOjFy5EHOxJeQSurx6eV0zIT-QYw6NrkDW6uDvXlfQAByRk5zXjAkhG_mRHPEGlFa1PiZPl6Wk4OZi3YA0hfxC_Tx1JcSJhomWZ6SbFDcxbRU70Gf726Y-0zH2OFAfE-1wyjFhT0sYsSqxwp84lU_k0Nsh4-f9PCWPN9cPV9-qu_vb71eXd1UHzJTKNrz3tXGm96wXtQXF0XDhAbV1zmltpfZikXrBDNegFPPaADiF0Ahj5Sm52OUuV_6YMZd2DLnDYbATxjm3jdZGaybfBbnRCup6C57_B67jnJbfcysYgBTaqAWCHdSlmHNC325SGG361XLWbutp39TT7upZbGf77NmN2P8z7fuQfwAjHJGV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204432897</pqid></control><display><type>article</type><title>Attributable risk function in the proportional hazards model for censored time-to-event</title><source>Oxford Journals Online</source><creator>Chen, Ying Qing ; Hu, Chengcheng ; Wang, Yan</creator><creatorcontrib>Chen, Ying Qing ; Hu, Chengcheng ; Wang, Yan</creatorcontrib><description>Time-to-event endpoints are often used in clinical and epidemiological studies to evaluate disease association with hazardous exposures. In the statistical literature of time-to-event analysis, such association is usually measured by the hazard ratio in the proportional hazards model. In public health, it is also of important interest to assess the excess risk attributable to an exposure in a given population. In this article, we extend the notion of 'population attributable fraction' for the binary outcomes to the attributable risk function for the event times in prospective studies. A simple estimator of the time-varying attributable risk function is proposed under the proportional hazards model. Its inference procedures are established. Monte-Carlo simulation studies are conducted to evaluate its validity and performance. The proposed methodology is motivated and demonstrated by the data collected in a multicenter acquired immunodeficiency syndrome (AIDS) cohort study to estimate the attributable risk of human immunodeficiency virus type 1 (HIV-1) infections due to several potential risk factors.</description><identifier>ISSN: 1465-4644</identifier><identifier>EISSN: 1468-4357</identifier><identifier>DOI: 10.1093/biostatistics/kxj023</identifier><identifier>PMID: 16478758</identifier><language>eng</language><publisher>England: Oxford Publishing Limited (England)</publisher><subject>Acquired immune deficiency syndrome ; AIDS ; Biometry - methods ; Cohort Studies ; Computer Simulation ; Epidemiology ; HIV ; HIV Infections - etiology ; HIV-1 ; Human immunodeficiency virus ; Human immunodeficiency virus 1 ; Humans ; Male ; Monte Carlo simulation ; Proportional Hazards Models ; Prospective Studies ; Public health ; Risk ; Risk assessment ; Time Factors</subject><ispartof>Biostatistics (Oxford, England), 2006-10, Vol.7 (4), p.515-529</ispartof><rights>Copyright Oxford University Press(England) Oct 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-a61df59b9df0d25a471e912f4e8abbb88a38f2e91d209184770f8944b7e4629a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16478758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ying Qing</creatorcontrib><creatorcontrib>Hu, Chengcheng</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><title>Attributable risk function in the proportional hazards model for censored time-to-event</title><title>Biostatistics (Oxford, England)</title><addtitle>Biostatistics</addtitle><description>Time-to-event endpoints are often used in clinical and epidemiological studies to evaluate disease association with hazardous exposures. In the statistical literature of time-to-event analysis, such association is usually measured by the hazard ratio in the proportional hazards model. In public health, it is also of important interest to assess the excess risk attributable to an exposure in a given population. In this article, we extend the notion of 'population attributable fraction' for the binary outcomes to the attributable risk function for the event times in prospective studies. A simple estimator of the time-varying attributable risk function is proposed under the proportional hazards model. Its inference procedures are established. Monte-Carlo simulation studies are conducted to evaluate its validity and performance. The proposed methodology is motivated and demonstrated by the data collected in a multicenter acquired immunodeficiency syndrome (AIDS) cohort study to estimate the attributable risk of human immunodeficiency virus type 1 (HIV-1) infections due to several potential risk factors.</description><subject>Acquired immune deficiency syndrome</subject><subject>AIDS</subject><subject>Biometry - methods</subject><subject>Cohort Studies</subject><subject>Computer Simulation</subject><subject>Epidemiology</subject><subject>HIV</subject><subject>HIV Infections - etiology</subject><subject>HIV-1</subject><subject>Human immunodeficiency virus</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Male</subject><subject>Monte Carlo simulation</subject><subject>Proportional Hazards Models</subject><subject>Prospective Studies</subject><subject>Public health</subject><subject>Risk</subject><subject>Risk assessment</subject><subject>Time Factors</subject><issn>1465-4644</issn><issn>1468-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkc1r3DAQxUVJaD7a_6AEkUNu7upjbEnHEJK0EMglIUcj2SOijW1tJbmk_evr7S6U9JLTDI_fe8zwCPnC2VfOjFy5EHOxJeQSurx6eV0zIT-QYw6NrkDW6uDvXlfQAByRk5zXjAkhG_mRHPEGlFa1PiZPl6Wk4OZi3YA0hfxC_Tx1JcSJhomWZ6SbFDcxbRU70Gf726Y-0zH2OFAfE-1wyjFhT0sYsSqxwp84lU_k0Nsh4-f9PCWPN9cPV9-qu_vb71eXd1UHzJTKNrz3tXGm96wXtQXF0XDhAbV1zmltpfZikXrBDNegFPPaADiF0Ahj5Sm52OUuV_6YMZd2DLnDYbATxjm3jdZGaybfBbnRCup6C57_B67jnJbfcysYgBTaqAWCHdSlmHNC325SGG361XLWbutp39TT7upZbGf77NmN2P8z7fuQfwAjHJGV</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Chen, Ying Qing</creator><creator>Hu, Chengcheng</creator><creator>Wang, Yan</creator><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>20061001</creationdate><title>Attributable risk function in the proportional hazards model for censored time-to-event</title><author>Chen, Ying Qing ; Hu, Chengcheng ; Wang, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-a61df59b9df0d25a471e912f4e8abbb88a38f2e91d209184770f8944b7e4629a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>AIDS</topic><topic>Biometry - methods</topic><topic>Cohort Studies</topic><topic>Computer Simulation</topic><topic>Epidemiology</topic><topic>HIV</topic><topic>HIV Infections - etiology</topic><topic>HIV-1</topic><topic>Human immunodeficiency virus</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Male</topic><topic>Monte Carlo simulation</topic><topic>Proportional Hazards Models</topic><topic>Prospective Studies</topic><topic>Public health</topic><topic>Risk</topic><topic>Risk assessment</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ying Qing</creatorcontrib><creatorcontrib>Hu, Chengcheng</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biostatistics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ying Qing</au><au>Hu, Chengcheng</au><au>Wang, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attributable risk function in the proportional hazards model for censored time-to-event</atitle><jtitle>Biostatistics (Oxford, England)</jtitle><addtitle>Biostatistics</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>7</volume><issue>4</issue><spage>515</spage><epage>529</epage><pages>515-529</pages><issn>1465-4644</issn><eissn>1468-4357</eissn><abstract>Time-to-event endpoints are often used in clinical and epidemiological studies to evaluate disease association with hazardous exposures. In the statistical literature of time-to-event analysis, such association is usually measured by the hazard ratio in the proportional hazards model. In public health, it is also of important interest to assess the excess risk attributable to an exposure in a given population. In this article, we extend the notion of 'population attributable fraction' for the binary outcomes to the attributable risk function for the event times in prospective studies. A simple estimator of the time-varying attributable risk function is proposed under the proportional hazards model. Its inference procedures are established. Monte-Carlo simulation studies are conducted to evaluate its validity and performance. The proposed methodology is motivated and demonstrated by the data collected in a multicenter acquired immunodeficiency syndrome (AIDS) cohort study to estimate the attributable risk of human immunodeficiency virus type 1 (HIV-1) infections due to several potential risk factors.</abstract><cop>England</cop><pub>Oxford Publishing Limited (England)</pub><pmid>16478758</pmid><doi>10.1093/biostatistics/kxj023</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-4644
ispartof Biostatistics (Oxford, England), 2006-10, Vol.7 (4), p.515-529
issn 1465-4644
1468-4357
language eng
recordid cdi_proquest_miscellaneous_68898803
source Oxford Journals Online
subjects Acquired immune deficiency syndrome
AIDS
Biometry - methods
Cohort Studies
Computer Simulation
Epidemiology
HIV
HIV Infections - etiology
HIV-1
Human immunodeficiency virus
Human immunodeficiency virus 1
Humans
Male
Monte Carlo simulation
Proportional Hazards Models
Prospective Studies
Public health
Risk
Risk assessment
Time Factors
title Attributable risk function in the proportional hazards model for censored time-to-event
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attributable%20risk%20function%20in%20the%20proportional%20hazards%20model%20for%20censored%20time-to-event&rft.jtitle=Biostatistics%20(Oxford,%20England)&rft.au=Chen,%20Ying%20Qing&rft.date=2006-10-01&rft.volume=7&rft.issue=4&rft.spage=515&rft.epage=529&rft.pages=515-529&rft.issn=1465-4644&rft.eissn=1468-4357&rft_id=info:doi/10.1093/biostatistics/kxj023&rft_dat=%3Cproquest_cross%3E19874553%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-a61df59b9df0d25a471e912f4e8abbb88a38f2e91d209184770f8944b7e4629a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204432897&rft_id=info:pmid/16478758&rfr_iscdi=true