Loading…

Pulsed magnetization transfer imaging with body coil transmission at 3 Tesla: Feasibility and application

Pulsed magnetization transfer (MT) imaging has been applied to quantitatively assess brain pathology in several diseases, especially multiple sclerosis (MS). To date, however, because of the high power deposition associated with the use of short, rapidly repeating MT prepulses, clinical application...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2006-10, Vol.56 (4), p.866-875
Main Authors: Smith, Seth A., Farrell, Jonathan A.D., Jones, Craig K., Reich, Daniel S., Calabresi, Peter A., van Zijl, Peter C.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4275-71a881e42b11185bbc04c126d2a01e337697b5d4ccafdf0aca189bb713debc943
cites cdi_FETCH-LOGICAL-c4275-71a881e42b11185bbc04c126d2a01e337697b5d4ccafdf0aca189bb713debc943
container_end_page 875
container_issue 4
container_start_page 866
container_title Magnetic resonance in medicine
container_volume 56
creator Smith, Seth A.
Farrell, Jonathan A.D.
Jones, Craig K.
Reich, Daniel S.
Calabresi, Peter A.
van Zijl, Peter C.M.
description Pulsed magnetization transfer (MT) imaging has been applied to quantitatively assess brain pathology in several diseases, especially multiple sclerosis (MS). To date, however, because of the high power deposition associated with the use of short, rapidly repeating MT prepulses, clinical application has been limited to lower field strengths. The contrast‐to‐noise ratio (CNR) of MT is limited, and this method would greatly benefit from the use of higher magnetic fields and phased‐array coil reception. However, power deposition is proportional to the square of the magnetic field and scales with coil size, and MT experiments are already close to the SAR limit at 1.5T even when smaller transmit coils are used instead of the body coil. Here we show that these seemingly great obstacles can be ameliorated by the increased T1 of tissue water at higher field, which allows for longer maintenance of sufficiently high saturation levels while using a reduced duty cycle. This enables a fast (5–6 min) high‐resolution (1.5 mm isotropic) whole‐brain MT acquisition with excellent anatomical visualization of gray matter (GM) and white matter (WM) structures, and even substructures. The method is demonstrated in nine normal volunteers and five patients with relapsing remitting MS (RRMS), and the results show a clear delineation of heterogeneous lesions. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.
doi_str_mv 10.1002/mrm.21035
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68901945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20855437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4275-71a881e42b11185bbc04c126d2a01e337697b5d4ccafdf0aca189bb713debc943</originalsourceid><addsrcrecordid>eNqFkUtP3DAURq0KVAbaRf9A5RVSFwFfP-K4u4IYHoIWVVN1admOQ93mMbUzguHXY8jQrhArS_a5x1ffh9AHIAdACD3sYndAgTDxBs1AUFpQofgWmhHJScFA8R20m9JvQohSkr9FO1CqkpeEzlC4XrXJ17gzN70fw70Zw9DjMZo-NT7ikO9Df4Nvw_gL26FeYzeEdnrvQkqPsBkxwwufWvMZz71JwYY2jGts-hqb5bIN7kn6Dm03Jv_1fnPuoR_zk8XxWXH57fT8-Mtl4TiVopBgqgo8pxYAKmGtI9wBLWtqCHjGZKmkFTV3zjR1Q4wzUClrJbDaW6c420P7k3cZh78rn0adF3W-bU3vh1XSZaVIjkS8ClJSCcGZzOCnCXRxSCn6Ri9jDiauNRD9WIDOBeinAjL7cSNd2c7X_8lN4hk4nIDb0Pr1yyZ99f3qWVlMEyGN_u7fhIl_dCmZFPrn11N9zeZHC3EBWrEHFsyf2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20855437</pqid></control><display><type>article</type><title>Pulsed magnetization transfer imaging with body coil transmission at 3 Tesla: Feasibility and application</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Smith, Seth A. ; Farrell, Jonathan A.D. ; Jones, Craig K. ; Reich, Daniel S. ; Calabresi, Peter A. ; van Zijl, Peter C.M.</creator><creatorcontrib>Smith, Seth A. ; Farrell, Jonathan A.D. ; Jones, Craig K. ; Reich, Daniel S. ; Calabresi, Peter A. ; van Zijl, Peter C.M.</creatorcontrib><description>Pulsed magnetization transfer (MT) imaging has been applied to quantitatively assess brain pathology in several diseases, especially multiple sclerosis (MS). To date, however, because of the high power deposition associated with the use of short, rapidly repeating MT prepulses, clinical application has been limited to lower field strengths. The contrast‐to‐noise ratio (CNR) of MT is limited, and this method would greatly benefit from the use of higher magnetic fields and phased‐array coil reception. However, power deposition is proportional to the square of the magnetic field and scales with coil size, and MT experiments are already close to the SAR limit at 1.5T even when smaller transmit coils are used instead of the body coil. Here we show that these seemingly great obstacles can be ameliorated by the increased T1 of tissue water at higher field, which allows for longer maintenance of sufficiently high saturation levels while using a reduced duty cycle. This enables a fast (5–6 min) high‐resolution (1.5 mm isotropic) whole‐brain MT acquisition with excellent anatomical visualization of gray matter (GM) and white matter (WM) structures, and even substructures. The method is demonstrated in nine normal volunteers and five patients with relapsing remitting MS (RRMS), and the results show a clear delineation of heterogeneous lesions. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.21035</identifier><identifier>PMID: 16964602</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adult ; Algorithms ; Analysis of Variance ; Brain Mapping - methods ; Feasibility Studies ; high field ; Humans ; Magnetic Resonance Imaging - methods ; magnetization transfer ; magnetization transfer ratio ; MRI ; multiple sclerosis ; Multiple Sclerosis, Relapsing-Remitting - pathology ; Reproducibility of Results</subject><ispartof>Magnetic resonance in medicine, 2006-10, Vol.56 (4), p.866-875</ispartof><rights>Copyright © 2006 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4275-71a881e42b11185bbc04c126d2a01e337697b5d4ccafdf0aca189bb713debc943</citedby><cites>FETCH-LOGICAL-c4275-71a881e42b11185bbc04c126d2a01e337697b5d4ccafdf0aca189bb713debc943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16964602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Seth A.</creatorcontrib><creatorcontrib>Farrell, Jonathan A.D.</creatorcontrib><creatorcontrib>Jones, Craig K.</creatorcontrib><creatorcontrib>Reich, Daniel S.</creatorcontrib><creatorcontrib>Calabresi, Peter A.</creatorcontrib><creatorcontrib>van Zijl, Peter C.M.</creatorcontrib><title>Pulsed magnetization transfer imaging with body coil transmission at 3 Tesla: Feasibility and application</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Pulsed magnetization transfer (MT) imaging has been applied to quantitatively assess brain pathology in several diseases, especially multiple sclerosis (MS). To date, however, because of the high power deposition associated with the use of short, rapidly repeating MT prepulses, clinical application has been limited to lower field strengths. The contrast‐to‐noise ratio (CNR) of MT is limited, and this method would greatly benefit from the use of higher magnetic fields and phased‐array coil reception. However, power deposition is proportional to the square of the magnetic field and scales with coil size, and MT experiments are already close to the SAR limit at 1.5T even when smaller transmit coils are used instead of the body coil. Here we show that these seemingly great obstacles can be ameliorated by the increased T1 of tissue water at higher field, which allows for longer maintenance of sufficiently high saturation levels while using a reduced duty cycle. This enables a fast (5–6 min) high‐resolution (1.5 mm isotropic) whole‐brain MT acquisition with excellent anatomical visualization of gray matter (GM) and white matter (WM) structures, and even substructures. The method is demonstrated in nine normal volunteers and five patients with relapsing remitting MS (RRMS), and the results show a clear delineation of heterogeneous lesions. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Brain Mapping - methods</subject><subject>Feasibility Studies</subject><subject>high field</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>magnetization transfer</subject><subject>magnetization transfer ratio</subject><subject>MRI</subject><subject>multiple sclerosis</subject><subject>Multiple Sclerosis, Relapsing-Remitting - pathology</subject><subject>Reproducibility of Results</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkUtP3DAURq0KVAbaRf9A5RVSFwFfP-K4u4IYHoIWVVN1admOQ93mMbUzguHXY8jQrhArS_a5x1ffh9AHIAdACD3sYndAgTDxBs1AUFpQofgWmhHJScFA8R20m9JvQohSkr9FO1CqkpeEzlC4XrXJ17gzN70fw70Zw9DjMZo-NT7ikO9Df4Nvw_gL26FeYzeEdnrvQkqPsBkxwwufWvMZz71JwYY2jGts-hqb5bIN7kn6Dm03Jv_1fnPuoR_zk8XxWXH57fT8-Mtl4TiVopBgqgo8pxYAKmGtI9wBLWtqCHjGZKmkFTV3zjR1Q4wzUClrJbDaW6c420P7k3cZh78rn0adF3W-bU3vh1XSZaVIjkS8ClJSCcGZzOCnCXRxSCn6Ri9jDiauNRD9WIDOBeinAjL7cSNd2c7X_8lN4hk4nIDb0Pr1yyZ99f3qWVlMEyGN_u7fhIl_dCmZFPrn11N9zeZHC3EBWrEHFsyf2g</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Smith, Seth A.</creator><creator>Farrell, Jonathan A.D.</creator><creator>Jones, Craig K.</creator><creator>Reich, Daniel S.</creator><creator>Calabresi, Peter A.</creator><creator>van Zijl, Peter C.M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200610</creationdate><title>Pulsed magnetization transfer imaging with body coil transmission at 3 Tesla: Feasibility and application</title><author>Smith, Seth A. ; Farrell, Jonathan A.D. ; Jones, Craig K. ; Reich, Daniel S. ; Calabresi, Peter A. ; van Zijl, Peter C.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4275-71a881e42b11185bbc04c126d2a01e337697b5d4ccafdf0aca189bb713debc943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Brain Mapping - methods</topic><topic>Feasibility Studies</topic><topic>high field</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>magnetization transfer</topic><topic>magnetization transfer ratio</topic><topic>MRI</topic><topic>multiple sclerosis</topic><topic>Multiple Sclerosis, Relapsing-Remitting - pathology</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Seth A.</creatorcontrib><creatorcontrib>Farrell, Jonathan A.D.</creatorcontrib><creatorcontrib>Jones, Craig K.</creatorcontrib><creatorcontrib>Reich, Daniel S.</creatorcontrib><creatorcontrib>Calabresi, Peter A.</creatorcontrib><creatorcontrib>van Zijl, Peter C.M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Seth A.</au><au>Farrell, Jonathan A.D.</au><au>Jones, Craig K.</au><au>Reich, Daniel S.</au><au>Calabresi, Peter A.</au><au>van Zijl, Peter C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulsed magnetization transfer imaging with body coil transmission at 3 Tesla: Feasibility and application</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2006-10</date><risdate>2006</risdate><volume>56</volume><issue>4</issue><spage>866</spage><epage>875</epage><pages>866-875</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Pulsed magnetization transfer (MT) imaging has been applied to quantitatively assess brain pathology in several diseases, especially multiple sclerosis (MS). To date, however, because of the high power deposition associated with the use of short, rapidly repeating MT prepulses, clinical application has been limited to lower field strengths. The contrast‐to‐noise ratio (CNR) of MT is limited, and this method would greatly benefit from the use of higher magnetic fields and phased‐array coil reception. However, power deposition is proportional to the square of the magnetic field and scales with coil size, and MT experiments are already close to the SAR limit at 1.5T even when smaller transmit coils are used instead of the body coil. Here we show that these seemingly great obstacles can be ameliorated by the increased T1 of tissue water at higher field, which allows for longer maintenance of sufficiently high saturation levels while using a reduced duty cycle. This enables a fast (5–6 min) high‐resolution (1.5 mm isotropic) whole‐brain MT acquisition with excellent anatomical visualization of gray matter (GM) and white matter (WM) structures, and even substructures. The method is demonstrated in nine normal volunteers and five patients with relapsing remitting MS (RRMS), and the results show a clear delineation of heterogeneous lesions. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16964602</pmid><doi>10.1002/mrm.21035</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2006-10, Vol.56 (4), p.866-875
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_68901945
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Adult
Algorithms
Analysis of Variance
Brain Mapping - methods
Feasibility Studies
high field
Humans
Magnetic Resonance Imaging - methods
magnetization transfer
magnetization transfer ratio
MRI
multiple sclerosis
Multiple Sclerosis, Relapsing-Remitting - pathology
Reproducibility of Results
title Pulsed magnetization transfer imaging with body coil transmission at 3 Tesla: Feasibility and application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulsed%20magnetization%20transfer%20imaging%20with%20body%20coil%20transmission%20at%203%20Tesla:%20Feasibility%20and%20application&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Smith,%20Seth%20A.&rft.date=2006-10&rft.volume=56&rft.issue=4&rft.spage=866&rft.epage=875&rft.pages=866-875&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.21035&rft_dat=%3Cproquest_cross%3E20855437%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4275-71a881e42b11185bbc04c126d2a01e337697b5d4ccafdf0aca189bb713debc943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20855437&rft_id=info:pmid/16964602&rfr_iscdi=true