Loading…

Defective Tumor Necrosis Factor-α-dependent Control of Astrocyte Glutamate Release in a Transgenic Mouse Model of Alzheimer Disease

The cytokine tumor necrosis factor-α (TNFα) induces Ca2+-dependent glutamate release from astrocytes via the downstream action of prostaglandin (PG) E2. By this process, astrocytes may participate in intercellular communication and neuromodulation. Acute inflammation in vitro, induced by adding reac...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2005-12, Vol.280 (51), p.42088-42096
Main Authors: Rossi, Daniela, Brambilla, Liliana, Valori, Chiara F., Crugnola, Andrea, Giaccone, Giorgio, Capobianco, Raffaella, Mangieri, Michela, Kingston, Ann E., Bloc, Alain, Bezzi, Paola, Volterra, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cytokine tumor necrosis factor-α (TNFα) induces Ca2+-dependent glutamate release from astrocytes via the downstream action of prostaglandin (PG) E2. By this process, astrocytes may participate in intercellular communication and neuromodulation. Acute inflammation in vitro, induced by adding reactive microglia to astrocyte cultures, enhances TNFα production and amplifies glutamate release, switching the pathway into a neurodamaging cascade (Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A. (2001) Nat. Neurosci. 4, 702–710). Because glial inflammation is a component of Alzheimer disease (AD) and TNFα is overexpressed in AD brains, we investigated possible alterations of the cytokine-dependent pathway in PDAPP mice, a transgenic model of AD. Glutamate release was measured in acute hippocampal and cerebellar slices from mice at early (4-month-old) and late (12-month-old) disease stages in comparison with age-matched controls. Surprisingly, TNFα-evoked glutamate release, normal in 4-month-old PDAPP mice, was dramatically reduced in the hippocampus of 12-month-old animals. This defect correlated with the presence of numerous β-amyloid deposits and hypertrophic astrocytes. In contrast, release was normal in cerebellum, a region devoid of β-amyloid deposition and astrocytosis. The Ca2+-dependent process by which TNFα evokes glutamate release in acute slices is distinct from synaptic release and displays properties identical to those observed in cultured astrocytes, notably PG dependence. However, prostaglandin E2 induced normal glutamate release responses in 12-month-old PDAPP mice, suggesting that the pathology-associated defect involves the TNFα-dependent control of secretion rather than the secretory process itself. Reduced expression of DENN/MADD, a mediator of TNFα-PG coupling, might account for the defect. Alteration of this neuromodulatory astrocytic pathway is described here for the first time in relation to Alzheimer disease.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M504124200