Loading…

Purification of Pharmaceutical Excipients with Supercritical Fluid Extraction

Supercritical fluid extraction (SFE), with carbon dioxide as the solvent, was tested for its ability to remove common reactive impurities from several pharmaceutical excipient powders including starch, microcrystalline cellulose (MCC), hydroxypropylcellulose (HPC), polyethylene oxide (PEO), and poly...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutical development and technology 2005-01, Vol.10 (4), p.507-516
Main Authors: Ashraf-Khorassani, Mehdi, Taylor, Larry T., Waterman, Kenneth C., Narayan, Padma, Brannegan, Daniel R., Reid, George L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Supercritical fluid extraction (SFE), with carbon dioxide as the solvent, was tested for its ability to remove common reactive impurities from several pharmaceutical excipient powders including starch, microcrystalline cellulose (MCC), hydroxypropylcellulose (HPC), polyethylene oxide (PEO), and polyvinylpyrrolidone (PVP). Extraction of the small molecule impurities, formic acid and formaldehyde, was conducted using SFE methods under conditions that did not result in visible physical changes to polymeric excipient powders. It could be shown that spiked, largely surface-bound, impurities could be removed effectively; however, SFE could only remove embedded impurities in the excipient particles after significant exposure times due to slow diffusion of the impurities to the particle surfaces. Attempts at hydrogen peroxide extraction were hindered by its low solubility in CO2, thereby effectively precluding SFE for removal of hydrogen peroxide from excipients. This work suggests that SFE will only be commercially useful for removal of low molecular weight impurities in polymeric excipients when migration of the impurities to the particle surfaces is sufficiently rapid for extraction to be completed in a reasonable time frame.
ISSN:1083-7450
1097-9867
DOI:10.1080/10837450500299958