Loading…

Immobilization of Keggin and Preyssler tungsten heteropolyacids on various functionalized silica

The Keggin and Preyssler tungsten heteropolyacids, H3PW12O40 and H15P5W30O110, have been immobilized on the inner surface of mesoporous MCM-41, fume silica and silica-gel by means of chemical bonding to aminosilane groups. The materials were characterized by FT-IR spectroscopy, low-angle XRD and BET...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2006-11, Vol.303 (1), p.32-38
Main Authors: Tarlani, Aliakbar, Abedini, Mansour, Nemati, Ali, Khabaz, Maryam, Amini, Mostafa M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Keggin and Preyssler tungsten heteropolyacids, H3PW12O40 and H15P5W30O110, have been immobilized on the inner surface of mesoporous MCM-41, fume silica and silica-gel by means of chemical bonding to aminosilane groups. The materials were characterized by FT-IR spectroscopy, low-angle XRD and BET surface area analysis. The tendencies of heteropolyacids adsorption in solution on functionalized silicas have been investigated by UV–vis. Among the functionalized silica materials, MCM-41 showed the largest amine to silica and the least heteropolyacid to silica ratios. The BET surface area revealed that in all three cases the surface area decreased after grafting amine group and anchoring of the HPAs clusters. Low-angle XRD analysis showed that by introducing HPA into functionalized MCM-41 the intensity of the main reflection decreased significantly. The Keggin and Preyssler tungsten heteropolyacids, H3PW12O40 and H15P5W30O110, have been immobilized on the surface of mesoporous MCM-41, fume silica and silica-gel by means of chemical bonding to aminosilane groups.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2006.07.024