Loading…
Genome-Wide Linkage Analysis to Identify Chromosomal Regions Affecting Phenotypic Traits in the Chicken. I. Growth and Average Daily Gain
A genome scan was used to detect chromosomal regions and QTL that control quantitative traits of economic importance in chickens. Two unique F2 crosses generated from a commercial broiler male line and 2 genetically distinct inbred lines (Leghorn and Fayoumi) were used to identify QTL affecting BW a...
Saved in:
Published in: | Poultry science 2006-10, Vol.85 (10), p.1700-1711 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A genome scan was used to detect chromosomal regions and QTL that control quantitative traits of economic importance in chickens. Two unique F2 crosses generated from a commercial broiler male line and 2 genetically distinct inbred lines (Leghorn and Fayoumi) were used to identify QTL affecting BW and daily average gain traits in chickens. Body weight at 2, 4, 6, and 8 wk was measured in the 2 F2 crosses. Birds were genotyped for 269 microsatellite markers across the entire genome. Linkage distance among microsatellite markers was estimated by the CRIMAP program. The program QTL Express was used for QTL detection. Significance levels were obtained using the permutation test. For the 8 traits, a total of 18 and 13 significant QTL were detected at a 1% chromosome-wise significance level, of which 17 and 10 were significant at the 5% genome-wise level for the broiler-Leghorn cross and broiler-Fayoumi cross, respectively. Highly correlated growth traits showed similar QTL profiles within each cross but different QTL profiles between the 2 crosses. Most QTL for growth traits in the current study were detected in Gga 1, 2, 4, 7, and 14 for the broiler-Leghorn cross and Gga 1, 2, 4, 5, 8, and 13 for the broiler-Fayoumi cross. Potential candidate genes within the QTL region for growth traits at 1% chromosome-wise significance level were discussed. The results in the current study lay the foundations for fine mapping these traits in the advanced intercross lines and provide a start point for identification causative genes responsible for growth traits in chickens. |
---|---|
ISSN: | 0032-5791 1525-3171 |
DOI: | 10.1093/ps/85.10.1700 |