Loading…

A 3D model of Reelin subrepeat regions predicts Reelin binding to carbohydrates

Reelin is a large molecule of the extracellular matrix (ECM) which regulates neuronal positioning during the early stages of cortical development in vertebrate species. The Reelin molecule can be subdivided into a smaller N-terminal domain, showing homology with F-spondin, and a larger C-terminal re...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 2006-10, Vol.1116 (1), p.222-230
Main Authors: Panteri, Roger, Paiardini, Alessandro, Keller, Flavio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reelin is a large molecule of the extracellular matrix (ECM) which regulates neuronal positioning during the early stages of cortical development in vertebrate species. The Reelin molecule can be subdivided into a smaller N-terminal domain, showing homology with F-spondin, and a larger C-terminal region containing 8 EGF-like repeats. The localization of Reelin in the ECM, its large dimensions and the modular organization of its primary structure led us to suppose a structure of its modules similar to domains commonly found in ECM proteins such as Agrin, laminins and thrombospondins. We therefore performed a sequence alignment and molecular modeling analysis to study the three-dimensional fold of the Reelin subrepeat regions. Our analysis produces a tentative model of the core region of the Reelin subrepeat sequences and suggests the presence in this 3D model of structural features common to polysaccharide-binding modules which are often found on proteoglycans of the ECM. These findings provide a conceptual framework for further experiments aimed at testing the functions of the EGF-like repeat regions of Reelin.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2006.07.128