Loading…

Differential Effects of a Perioperative Hyperinsulinemic Normoglycemic Clamp on the Neurohumoral Stress Response during Coronary Artery Surgery

Background: Hyperglycemia in patients undergoing coronary artery bypass grafting (CABG) is associated with adverse outcome. Although insulin infusion strategies are increasingly used to improve outcome, a pathophysiological rationale is currently lacking. The present study was designed to quantify t...

Full description

Saved in:
Bibliographic Details
Published in:The journal of clinical endocrinology and metabolism 2006-10, Vol.91 (10), p.4144-4153
Main Authors: van Wezel, H. B., Zuurbier, C. J., de Jonge, E., van Dam, E. W. C. M., van Dijk, J., Endert, E., de Mol, B. A., Fliers, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Hyperglycemia in patients undergoing coronary artery bypass grafting (CABG) is associated with adverse outcome. Although insulin infusion strategies are increasingly used to improve outcome, a pathophysiological rationale is currently lacking. The present study was designed to quantify the effects of a perioperative hyperinsulinemic normoglycemic clamp on the neurohumoral stress response during CABG. Methods: Forty-four nondiabetic patients, scheduled for elective CABG, were randomized to either a control group (n = 22) receiving standard care or to a clamp group (n = 22) receiving additionally a perioperative hyperinsulinemic (regular insulin at a fixed rate of 0.1 IU·kg−1·h−1) normoglycemic (plasma glucose between 3.0 and 6.0 mmol·liter−1) clamp during 26 h. We measured the endocrine response of the hypothalamus-pituitary-adrenal (HPA) axis, the sympathoadrenal axis, and glucagon, as well as plasma glucose and insulin at regular intervals from the induction of anesthesia at baseline through the end of the second postoperative day (POD). Results: There were no differences in clinical outcome between the groups. In the control group, hyperglycemia developed at the end of surgery and remained present until the final measurement point on POD2, whereas plasma insulin levels remained unchanged until the morning of POD1. In the intervention group, normoglycemia was well maintained during the clamp, whereas insulin levels ranged between 600 and 800 pmol·liter−1. In both groups, plasma ACTH and cortisol increased from 6 h after discontinuation of cardiopulmonary bypass onward. However, during the clamp period, a marked reduction in the HPA axis response was found in the intervention group, as reflected by a 47% smaller increase in area under the curve in plasma ACTH (P = 0.035) and a 27% smaller increase in plasma cortisol (P = 0.002) compared with the control group. Compared with baseline, epinephrine and norepinephrine increased by the end of the clamp interval until POD2 in both groups. Surprisingly, the area under the curve of epinephrine levels was 47% higher (P = 0.026) after the clamp interval in the intervention group as compared with the control group. Conclusion: A hyperinsulinemic normoglycemic clamp during CABG delays and attenuates the HPA axis response during the first 18 h of the myocardial reperfusion period, whereas after the clamp, plasma epinephrine is higher. The impact of delaying cortisol responses on clinical outcome of CABG rem
ISSN:0021-972X
1945-7197
DOI:10.1210/jc.2006-1199