Loading…

Statics and dynamics of an inhomogeneously nonlinear lattice

We introduce an inhomogeneously nonlinear Schrödinger lattice, featuring a defocusing segment, a focusing segment and a transitional interface between the two. We illustrate that such inhomogeneous settings present vastly different dynamical behavior in the vicinity of the interface than the one exp...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 2), p.036602-036602, Article 036602
Main Authors: Machacek, Debra L, Foreman, Elizabeth A, Hoq, Q E, Kevrekidis, P G, Saxena, A, Frantzeskakis, D J, Bishop, A R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73
cites cdi_FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73
container_end_page 036602
container_issue 3 Pt 2
container_start_page 036602
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 74
creator Machacek, Debra L
Foreman, Elizabeth A
Hoq, Q E
Kevrekidis, P G
Saxena, A
Frantzeskakis, D J
Bishop, A R
description We introduce an inhomogeneously nonlinear Schrödinger lattice, featuring a defocusing segment, a focusing segment and a transitional interface between the two. We illustrate that such inhomogeneous settings present vastly different dynamical behavior in the vicinity of the interface than the one expected in their homogeneous counterparts. We analyze the relevant stationary states, as well as their stability, by means of perturbation theory and linear stability analysis. We find good agreement with the numerical findings in the vicinity of the anticontinuum limit. For larger values of the coupling, we follow the relevant branches numerically and show that they terminate at values of the coupling strength which are larger for more extended solutions. The dynamical development of relevant instabilities is also monitored in the case of unstable solutions.
doi_str_mv 10.1103/PhysRevE.74.036602
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68940379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68940379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRbK3-AReSlbvUO69MBtxIqQ8QFB_rYTIPG0lmaiYV8u9NbcXVvQfOOdz7IXSOYY4x0Kvn1ZBe3PdyLtgcaFEAOUBTzDnkhIricLtTmVPB-QSdpPQJQAkt2TGaYAGECy6n6Pq1131tUqaDzewQdLsV0Y86q8MqtvHDBRc3qRmyEENTB6e7rNH9GHKn6MjrJrmz_Zyh99vl2-I-f3y6e1jcPOaGEtnnpqKOW-BGUlNiqEA4jy0mFWecGWMI8MITTcenBFhsBRPaeul9WTJTOUFn6HLXu-7i18alXrV1Mq5p9O9pqiglAyrkaCQ7o-liSp3zat3Vre4GhUFtmak_ZkowtWM2hi727ZuqdfY_sodEfwDDAWnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68940379</pqid></control><display><type>article</type><title>Statics and dynamics of an inhomogeneously nonlinear lattice</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Machacek, Debra L ; Foreman, Elizabeth A ; Hoq, Q E ; Kevrekidis, P G ; Saxena, A ; Frantzeskakis, D J ; Bishop, A R</creator><creatorcontrib>Machacek, Debra L ; Foreman, Elizabeth A ; Hoq, Q E ; Kevrekidis, P G ; Saxena, A ; Frantzeskakis, D J ; Bishop, A R</creatorcontrib><description>We introduce an inhomogeneously nonlinear Schrödinger lattice, featuring a defocusing segment, a focusing segment and a transitional interface between the two. We illustrate that such inhomogeneous settings present vastly different dynamical behavior in the vicinity of the interface than the one expected in their homogeneous counterparts. We analyze the relevant stationary states, as well as their stability, by means of perturbation theory and linear stability analysis. We find good agreement with the numerical findings in the vicinity of the anticontinuum limit. For larger values of the coupling, we follow the relevant branches numerically and show that they terminate at values of the coupling strength which are larger for more extended solutions. The dynamical development of relevant instabilities is also monitored in the case of unstable solutions.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.74.036602</identifier><identifier>PMID: 17025759</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 2), p.036602-036602, Article 036602</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73</citedby><cites>FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17025759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Machacek, Debra L</creatorcontrib><creatorcontrib>Foreman, Elizabeth A</creatorcontrib><creatorcontrib>Hoq, Q E</creatorcontrib><creatorcontrib>Kevrekidis, P G</creatorcontrib><creatorcontrib>Saxena, A</creatorcontrib><creatorcontrib>Frantzeskakis, D J</creatorcontrib><creatorcontrib>Bishop, A R</creatorcontrib><title>Statics and dynamics of an inhomogeneously nonlinear lattice</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We introduce an inhomogeneously nonlinear Schrödinger lattice, featuring a defocusing segment, a focusing segment and a transitional interface between the two. We illustrate that such inhomogeneous settings present vastly different dynamical behavior in the vicinity of the interface than the one expected in their homogeneous counterparts. We analyze the relevant stationary states, as well as their stability, by means of perturbation theory and linear stability analysis. We find good agreement with the numerical findings in the vicinity of the anticontinuum limit. For larger values of the coupling, we follow the relevant branches numerically and show that they terminate at values of the coupling strength which are larger for more extended solutions. The dynamical development of relevant instabilities is also monitored in the case of unstable solutions.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AUhQdRbK3-AReSlbvUO69MBtxIqQ8QFB_rYTIPG0lmaiYV8u9NbcXVvQfOOdz7IXSOYY4x0Kvn1ZBe3PdyLtgcaFEAOUBTzDnkhIricLtTmVPB-QSdpPQJQAkt2TGaYAGECy6n6Pq1131tUqaDzewQdLsV0Y86q8MqtvHDBRc3qRmyEENTB6e7rNH9GHKn6MjrJrmz_Zyh99vl2-I-f3y6e1jcPOaGEtnnpqKOW-BGUlNiqEA4jy0mFWecGWMI8MITTcenBFhsBRPaeul9WTJTOUFn6HLXu-7i18alXrV1Mq5p9O9pqiglAyrkaCQ7o-liSp3zat3Vre4GhUFtmak_ZkowtWM2hi727ZuqdfY_sodEfwDDAWnQ</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Machacek, Debra L</creator><creator>Foreman, Elizabeth A</creator><creator>Hoq, Q E</creator><creator>Kevrekidis, P G</creator><creator>Saxena, A</creator><creator>Frantzeskakis, D J</creator><creator>Bishop, A R</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060901</creationdate><title>Statics and dynamics of an inhomogeneously nonlinear lattice</title><author>Machacek, Debra L ; Foreman, Elizabeth A ; Hoq, Q E ; Kevrekidis, P G ; Saxena, A ; Frantzeskakis, D J ; Bishop, A R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machacek, Debra L</creatorcontrib><creatorcontrib>Foreman, Elizabeth A</creatorcontrib><creatorcontrib>Hoq, Q E</creatorcontrib><creatorcontrib>Kevrekidis, P G</creatorcontrib><creatorcontrib>Saxena, A</creatorcontrib><creatorcontrib>Frantzeskakis, D J</creatorcontrib><creatorcontrib>Bishop, A R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machacek, Debra L</au><au>Foreman, Elizabeth A</au><au>Hoq, Q E</au><au>Kevrekidis, P G</au><au>Saxena, A</au><au>Frantzeskakis, D J</au><au>Bishop, A R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statics and dynamics of an inhomogeneously nonlinear lattice</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2006-09-01</date><risdate>2006</risdate><volume>74</volume><issue>3 Pt 2</issue><spage>036602</spage><epage>036602</epage><pages>036602-036602</pages><artnum>036602</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We introduce an inhomogeneously nonlinear Schrödinger lattice, featuring a defocusing segment, a focusing segment and a transitional interface between the two. We illustrate that such inhomogeneous settings present vastly different dynamical behavior in the vicinity of the interface than the one expected in their homogeneous counterparts. We analyze the relevant stationary states, as well as their stability, by means of perturbation theory and linear stability analysis. We find good agreement with the numerical findings in the vicinity of the anticontinuum limit. For larger values of the coupling, we follow the relevant branches numerically and show that they terminate at values of the coupling strength which are larger for more extended solutions. The dynamical development of relevant instabilities is also monitored in the case of unstable solutions.</abstract><cop>United States</cop><pmid>17025759</pmid><doi>10.1103/PhysRevE.74.036602</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 2), p.036602-036602, Article 036602
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_68940379
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Statics and dynamics of an inhomogeneously nonlinear lattice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statics%20and%20dynamics%20of%20an%20inhomogeneously%20nonlinear%20lattice&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Machacek,%20Debra%20L&rft.date=2006-09-01&rft.volume=74&rft.issue=3%20Pt%202&rft.spage=036602&rft.epage=036602&rft.pages=036602-036602&rft.artnum=036602&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.74.036602&rft_dat=%3Cproquest_cross%3E68940379%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68940379&rft_id=info:pmid/17025759&rfr_iscdi=true