Loading…
Statics and dynamics of an inhomogeneously nonlinear lattice
We introduce an inhomogeneously nonlinear Schrödinger lattice, featuring a defocusing segment, a focusing segment and a transitional interface between the two. We illustrate that such inhomogeneous settings present vastly different dynamical behavior in the vicinity of the interface than the one exp...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 2), p.036602-036602, Article 036602 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73 |
---|---|
cites | cdi_FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73 |
container_end_page | 036602 |
container_issue | 3 Pt 2 |
container_start_page | 036602 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 74 |
creator | Machacek, Debra L Foreman, Elizabeth A Hoq, Q E Kevrekidis, P G Saxena, A Frantzeskakis, D J Bishop, A R |
description | We introduce an inhomogeneously nonlinear Schrödinger lattice, featuring a defocusing segment, a focusing segment and a transitional interface between the two. We illustrate that such inhomogeneous settings present vastly different dynamical behavior in the vicinity of the interface than the one expected in their homogeneous counterparts. We analyze the relevant stationary states, as well as their stability, by means of perturbation theory and linear stability analysis. We find good agreement with the numerical findings in the vicinity of the anticontinuum limit. For larger values of the coupling, we follow the relevant branches numerically and show that they terminate at values of the coupling strength which are larger for more extended solutions. The dynamical development of relevant instabilities is also monitored in the case of unstable solutions. |
doi_str_mv | 10.1103/PhysRevE.74.036602 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68940379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68940379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRbK3-AReSlbvUO69MBtxIqQ8QFB_rYTIPG0lmaiYV8u9NbcXVvQfOOdz7IXSOYY4x0Kvn1ZBe3PdyLtgcaFEAOUBTzDnkhIricLtTmVPB-QSdpPQJQAkt2TGaYAGECy6n6Pq1131tUqaDzewQdLsV0Y86q8MqtvHDBRc3qRmyEENTB6e7rNH9GHKn6MjrJrmz_Zyh99vl2-I-f3y6e1jcPOaGEtnnpqKOW-BGUlNiqEA4jy0mFWecGWMI8MITTcenBFhsBRPaeul9WTJTOUFn6HLXu-7i18alXrV1Mq5p9O9pqiglAyrkaCQ7o-liSp3zat3Vre4GhUFtmak_ZkowtWM2hi727ZuqdfY_sodEfwDDAWnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68940379</pqid></control><display><type>article</type><title>Statics and dynamics of an inhomogeneously nonlinear lattice</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Machacek, Debra L ; Foreman, Elizabeth A ; Hoq, Q E ; Kevrekidis, P G ; Saxena, A ; Frantzeskakis, D J ; Bishop, A R</creator><creatorcontrib>Machacek, Debra L ; Foreman, Elizabeth A ; Hoq, Q E ; Kevrekidis, P G ; Saxena, A ; Frantzeskakis, D J ; Bishop, A R</creatorcontrib><description>We introduce an inhomogeneously nonlinear Schrödinger lattice, featuring a defocusing segment, a focusing segment and a transitional interface between the two. We illustrate that such inhomogeneous settings present vastly different dynamical behavior in the vicinity of the interface than the one expected in their homogeneous counterparts. We analyze the relevant stationary states, as well as their stability, by means of perturbation theory and linear stability analysis. We find good agreement with the numerical findings in the vicinity of the anticontinuum limit. For larger values of the coupling, we follow the relevant branches numerically and show that they terminate at values of the coupling strength which are larger for more extended solutions. The dynamical development of relevant instabilities is also monitored in the case of unstable solutions.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.74.036602</identifier><identifier>PMID: 17025759</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 2), p.036602-036602, Article 036602</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73</citedby><cites>FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17025759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Machacek, Debra L</creatorcontrib><creatorcontrib>Foreman, Elizabeth A</creatorcontrib><creatorcontrib>Hoq, Q E</creatorcontrib><creatorcontrib>Kevrekidis, P G</creatorcontrib><creatorcontrib>Saxena, A</creatorcontrib><creatorcontrib>Frantzeskakis, D J</creatorcontrib><creatorcontrib>Bishop, A R</creatorcontrib><title>Statics and dynamics of an inhomogeneously nonlinear lattice</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We introduce an inhomogeneously nonlinear Schrödinger lattice, featuring a defocusing segment, a focusing segment and a transitional interface between the two. We illustrate that such inhomogeneous settings present vastly different dynamical behavior in the vicinity of the interface than the one expected in their homogeneous counterparts. We analyze the relevant stationary states, as well as their stability, by means of perturbation theory and linear stability analysis. We find good agreement with the numerical findings in the vicinity of the anticontinuum limit. For larger values of the coupling, we follow the relevant branches numerically and show that they terminate at values of the coupling strength which are larger for more extended solutions. The dynamical development of relevant instabilities is also monitored in the case of unstable solutions.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AUhQdRbK3-AReSlbvUO69MBtxIqQ8QFB_rYTIPG0lmaiYV8u9NbcXVvQfOOdz7IXSOYY4x0Kvn1ZBe3PdyLtgcaFEAOUBTzDnkhIricLtTmVPB-QSdpPQJQAkt2TGaYAGECy6n6Pq1131tUqaDzewQdLsV0Y86q8MqtvHDBRc3qRmyEENTB6e7rNH9GHKn6MjrJrmz_Zyh99vl2-I-f3y6e1jcPOaGEtnnpqKOW-BGUlNiqEA4jy0mFWecGWMI8MITTcenBFhsBRPaeul9WTJTOUFn6HLXu-7i18alXrV1Mq5p9O9pqiglAyrkaCQ7o-liSp3zat3Vre4GhUFtmak_ZkowtWM2hi727ZuqdfY_sodEfwDDAWnQ</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Machacek, Debra L</creator><creator>Foreman, Elizabeth A</creator><creator>Hoq, Q E</creator><creator>Kevrekidis, P G</creator><creator>Saxena, A</creator><creator>Frantzeskakis, D J</creator><creator>Bishop, A R</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060901</creationdate><title>Statics and dynamics of an inhomogeneously nonlinear lattice</title><author>Machacek, Debra L ; Foreman, Elizabeth A ; Hoq, Q E ; Kevrekidis, P G ; Saxena, A ; Frantzeskakis, D J ; Bishop, A R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machacek, Debra L</creatorcontrib><creatorcontrib>Foreman, Elizabeth A</creatorcontrib><creatorcontrib>Hoq, Q E</creatorcontrib><creatorcontrib>Kevrekidis, P G</creatorcontrib><creatorcontrib>Saxena, A</creatorcontrib><creatorcontrib>Frantzeskakis, D J</creatorcontrib><creatorcontrib>Bishop, A R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machacek, Debra L</au><au>Foreman, Elizabeth A</au><au>Hoq, Q E</au><au>Kevrekidis, P G</au><au>Saxena, A</au><au>Frantzeskakis, D J</au><au>Bishop, A R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statics and dynamics of an inhomogeneously nonlinear lattice</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2006-09-01</date><risdate>2006</risdate><volume>74</volume><issue>3 Pt 2</issue><spage>036602</spage><epage>036602</epage><pages>036602-036602</pages><artnum>036602</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We introduce an inhomogeneously nonlinear Schrödinger lattice, featuring a defocusing segment, a focusing segment and a transitional interface between the two. We illustrate that such inhomogeneous settings present vastly different dynamical behavior in the vicinity of the interface than the one expected in their homogeneous counterparts. We analyze the relevant stationary states, as well as their stability, by means of perturbation theory and linear stability analysis. We find good agreement with the numerical findings in the vicinity of the anticontinuum limit. For larger values of the coupling, we follow the relevant branches numerically and show that they terminate at values of the coupling strength which are larger for more extended solutions. The dynamical development of relevant instabilities is also monitored in the case of unstable solutions.</abstract><cop>United States</cop><pmid>17025759</pmid><doi>10.1103/PhysRevE.74.036602</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 2), p.036602-036602, Article 036602 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_68940379 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Statics and dynamics of an inhomogeneously nonlinear lattice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statics%20and%20dynamics%20of%20an%20inhomogeneously%20nonlinear%20lattice&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Machacek,%20Debra%20L&rft.date=2006-09-01&rft.volume=74&rft.issue=3%20Pt%202&rft.spage=036602&rft.epage=036602&rft.pages=036602-036602&rft.artnum=036602&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.74.036602&rft_dat=%3Cproquest_cross%3E68940379%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-cb3e5d05c93c810b07ef1d12b5454ccc2056f2a311070d1d747adf9ff884cbe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68940379&rft_id=info:pmid/17025759&rfr_iscdi=true |