Loading…

Combination of adenoviral vector-mediated neurotrophin-3 gene transfer and retinoic acid promotes adult bone marrow cells to differentiate into neuronal phenotypes

This study aims to investigate the effect of adenoviral vector-mediated neurotrophine-3 (NT-3) gene transfer and retinoic acid (RA) pretreatment on inducing neuronal differentiation of bone marrow mesenchymal stem cells (MSCs) in vitro. MSCs could be efficiently transduced by NT-3 gene via recombina...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience letters 2006-11, Vol.408 (2), p.98-103
Main Authors: Zhang, Wei, Zeng, Yuan-Shan, Zhang, Xue-Bao, Wang, Jun-Mei, Chen, Shui-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to investigate the effect of adenoviral vector-mediated neurotrophine-3 (NT-3) gene transfer and retinoic acid (RA) pretreatment on inducing neuronal differentiation of bone marrow mesenchymal stem cells (MSCs) in vitro. MSCs could be efficiently transduced by NT-3 gene via recombinant adenoviral vectors (Adv). Combination of AdvNT-3 and RA significantly promoted MSCs to differentiate into cell types associated with phenotypes of neural lineages, which included neural markers nestin, NF, MAP2 and PSD95 as detected by immunocytochemistry. But the expressions of GFAP in these cells were not obvious. RT-PCR analysis revealed that AdvNT-3 in combination with RA pretreatment could initiate the transcription of TrkC mRNA. These results demonstrate that the combination of AdvNT-3 and RA pretreatment may promote neuronal differentiation of MSCs, which may serve as ideal seed cells for the repair of spinal cord injury.
ISSN:0304-3940
1872-7972
DOI:10.1016/j.neulet.2006.08.079