Loading…

A novel polymer for potential use in a trileaflet heart valve

A novel polyolefin, poly(styrene‐b‐isobutylene‐b‐styrene) (Quatromer™), is being proposed as a viable polymer for use in trileaflet heart valves because of its oxidative stability. The current study was designed to assess the polymer's hemocompatibility and mechanical durability. Mechanical cha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2006-11, Vol.79B (2), p.325-334
Main Authors: Gallocher, Siobhain L., Aguirre, Andres F., Kasyanov, Vladimir, Pinchuk, Leonard, Schoephoerster, Richard T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel polyolefin, poly(styrene‐b‐isobutylene‐b‐styrene) (Quatromer™), is being proposed as a viable polymer for use in trileaflet heart valves because of its oxidative stability. The current study was designed to assess the polymer's hemocompatibility and mechanical durability. Mechanical characterization included static tensile tests and dynamic tension–tension and bending fatigue tests, where the properties of isotropic and composite (polypropylene (PP) embedded) Quatromer specimens were compared with those of a polyurethane (PUR) approved for cardiovascular applications. It was found that by embedding PP fibers into the Quatromer matrix, the tensile and fatigue properties of the polymer could be improved, making them comparable, if not better than the PUR. The thrombotic potential of Quatromer was compared with the PUR, glutaraldehyde‐fixed porcine valve material, and a positive and negative control by measuring platelet deposition with radiolabeled platelets in a parallel plate flow configuration. The porcine valve material was found to have significantly higher platelet deposition under all flow regimes, while no significant difference existed between Quatromer and PUR. In conclusion, Quatromer is shown to have suitable hemocompatibility and mechanical durability for use in polymer trileaflet heart valves, and fiber reinforcement can effectively be used to tailor the mechanical properties. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006
ISSN:1552-4973
1552-4981
DOI:10.1002/jbm.b.30546