Loading…

Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach

Summary Objective The amount of new discoveries (as published in the scientific literature) in the biomedical area is growing at an exponential rate. This growth makes it very difficult to filter the most relevant results, and thus the extraction of the core information becomes very expensive. There...

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence in medicine 2007-02, Vol.39 (2), p.127-136
Main Authors: Rinaldi, Fabio, Schneider, Gerold, Kaljurand, Kaarel, Hess, Michael, Andronis, Christos, Konstandi, Ourania, Persidis, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c543t-76b0a2b54fd5544ac659f73f0869c4e4009a9a79604213b0b79d3213460719bf3
cites cdi_FETCH-LOGICAL-c543t-76b0a2b54fd5544ac659f73f0869c4e4009a9a79604213b0b79d3213460719bf3
container_end_page 136
container_issue 2
container_start_page 127
container_title Artificial intelligence in medicine
container_volume 39
creator Rinaldi, Fabio
Schneider, Gerold
Kaljurand, Kaarel
Hess, Michael
Andronis, Christos
Konstandi, Ourania
Persidis, Andreas
description Summary Objective The amount of new discoveries (as published in the scientific literature) in the biomedical area is growing at an exponential rate. This growth makes it very difficult to filter the most relevant results, and thus the extraction of the core information becomes very expensive. Therefore, there is a growing interest in text processing approaches that can deliver selected information from scientific publications, which can limit the amount of human intervention normally needed to gather those results. Materials and methods This paper presents and evaluates an approach aimed at automating the process of extracting functional relations (e.g. interactions between genes and proteins) from scientific literature in the biomedical domain. The approach, using a novel dependency-based parser, is based on a complete syntactic analysis of the corpus. Results We have implemented a state-of-the-art text mining system for biomedical literature, based on a deep-linguistic, full-parsing approach. The results are validated on two different corpora: the manually annotated genomics information access (GENIA) corpus and the automatically annotated arabidopsis thaliana circadian rhythms (ATCR) corpus. Conclusion We show how a deep-linguistic approach (contrary to common belief) can be used in a real world text mining application, offering high-precision relation extraction, while at the same time retaining a sufficient recall.
doi_str_mv 10.1016/j.artmed.2006.08.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68955937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0933365706001370</els_id><sourcerecordid>68955937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-76b0a2b54fd5544ac659f73f0869c4e4009a9a79604213b0b79d3213460719bf3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EokvhHyDkE7eEcfwVX5BQRUulIg60Z8txJuBtNllsp6j_Hqe74tDLSpZs2c-8I_kZQt4zqBkw9Wlbu5h32NcNgKqhrQHkC7JhreZV0yp4STZgOK-4kvqMvElpCwBaMPWanDENsjEAG3L_PUxh-kXngUYcXQ7zlGiH-S_iRPdxzhjKxfyAkXZhLu2CdyNNPuCUwxA8HUPG6PISkS5pTXK0R9xXYzkvIeWCuH0Jcv73W_JqcGPCd8f9nNxdfr29-Fbd_Li6vvhyU3kpeK606sA1nRRDL6UQzitpBs0HaJXxAgWAccZpo0A0jHfQadPzchIKNDPdwM_Jx0NuaftnwZTtLiSP4-gmnJdkVWukNFyfBBvQT-skyIw0DZgVFAfQxzmliIPdx7Bz8dEysKs2u7UHbXbVZqG1RVsp-3DMX7r17X_R0VMBPh8ALP_2EDDaJwW--Ijos-3ncKrD8wBfDK0y7_ER03Ze4lScWGZTY8H-XEdnnRxQAIxr4P8AM5q_9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19592090</pqid></control><display><type>article</type><title>Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Rinaldi, Fabio ; Schneider, Gerold ; Kaljurand, Kaarel ; Hess, Michael ; Andronis, Christos ; Konstandi, Ourania ; Persidis, Andreas</creator><creatorcontrib>Rinaldi, Fabio ; Schneider, Gerold ; Kaljurand, Kaarel ; Hess, Michael ; Andronis, Christos ; Konstandi, Ourania ; Persidis, Andreas</creatorcontrib><description>Summary Objective The amount of new discoveries (as published in the scientific literature) in the biomedical area is growing at an exponential rate. This growth makes it very difficult to filter the most relevant results, and thus the extraction of the core information becomes very expensive. Therefore, there is a growing interest in text processing approaches that can deliver selected information from scientific publications, which can limit the amount of human intervention normally needed to gather those results. Materials and methods This paper presents and evaluates an approach aimed at automating the process of extracting functional relations (e.g. interactions between genes and proteins) from scientific literature in the biomedical domain. The approach, using a novel dependency-based parser, is based on a complete syntactic analysis of the corpus. Results We have implemented a state-of-the-art text mining system for biomedical literature, based on a deep-linguistic, full-parsing approach. The results are validated on two different corpora: the manually annotated genomics information access (GENIA) corpus and the automatically annotated arabidopsis thaliana circadian rhythms (ATCR) corpus. Conclusion We show how a deep-linguistic approach (contrary to common belief) can be used in a real world text mining application, offering high-precision relation extraction, while at the same time retaining a sufficient recall.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2006.08.005</identifier><identifier>PMID: 17052900</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Arabidopsis thaliana ; Artificial Intelligence ; Automation ; Biomedical literature ; Databases, Factual ; Dependency parsing ; Humans ; Information extraction ; Internal Medicine ; Linguistics ; Mammals ; Other ; Periodicals as Topic ; Plant Proteins ; Protein interactions ; Proteins - chemistry ; Proteins - physiology ; Publishing ; Semantics ; Text mining</subject><ispartof>Artificial intelligence in medicine, 2007-02, Vol.39 (2), p.127-136</ispartof><rights>2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-76b0a2b54fd5544ac659f73f0869c4e4009a9a79604213b0b79d3213460719bf3</citedby><cites>FETCH-LOGICAL-c543t-76b0a2b54fd5544ac659f73f0869c4e4009a9a79604213b0b79d3213460719bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17052900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rinaldi, Fabio</creatorcontrib><creatorcontrib>Schneider, Gerold</creatorcontrib><creatorcontrib>Kaljurand, Kaarel</creatorcontrib><creatorcontrib>Hess, Michael</creatorcontrib><creatorcontrib>Andronis, Christos</creatorcontrib><creatorcontrib>Konstandi, Ourania</creatorcontrib><creatorcontrib>Persidis, Andreas</creatorcontrib><title>Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>Summary Objective The amount of new discoveries (as published in the scientific literature) in the biomedical area is growing at an exponential rate. This growth makes it very difficult to filter the most relevant results, and thus the extraction of the core information becomes very expensive. Therefore, there is a growing interest in text processing approaches that can deliver selected information from scientific publications, which can limit the amount of human intervention normally needed to gather those results. Materials and methods This paper presents and evaluates an approach aimed at automating the process of extracting functional relations (e.g. interactions between genes and proteins) from scientific literature in the biomedical domain. The approach, using a novel dependency-based parser, is based on a complete syntactic analysis of the corpus. Results We have implemented a state-of-the-art text mining system for biomedical literature, based on a deep-linguistic, full-parsing approach. The results are validated on two different corpora: the manually annotated genomics information access (GENIA) corpus and the automatically annotated arabidopsis thaliana circadian rhythms (ATCR) corpus. Conclusion We show how a deep-linguistic approach (contrary to common belief) can be used in a real world text mining application, offering high-precision relation extraction, while at the same time retaining a sufficient recall.</description><subject>Animals</subject><subject>Arabidopsis thaliana</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Biomedical literature</subject><subject>Databases, Factual</subject><subject>Dependency parsing</subject><subject>Humans</subject><subject>Information extraction</subject><subject>Internal Medicine</subject><subject>Linguistics</subject><subject>Mammals</subject><subject>Other</subject><subject>Periodicals as Topic</subject><subject>Plant Proteins</subject><subject>Protein interactions</subject><subject>Proteins - chemistry</subject><subject>Proteins - physiology</subject><subject>Publishing</subject><subject>Semantics</subject><subject>Text mining</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhi0EokvhHyDkE7eEcfwVX5BQRUulIg60Z8txJuBtNllsp6j_Hqe74tDLSpZs2c-8I_kZQt4zqBkw9Wlbu5h32NcNgKqhrQHkC7JhreZV0yp4STZgOK-4kvqMvElpCwBaMPWanDENsjEAG3L_PUxh-kXngUYcXQ7zlGiH-S_iRPdxzhjKxfyAkXZhLu2CdyNNPuCUwxA8HUPG6PISkS5pTXK0R9xXYzkvIeWCuH0Jcv73W_JqcGPCd8f9nNxdfr29-Fbd_Li6vvhyU3kpeK606sA1nRRDL6UQzitpBs0HaJXxAgWAccZpo0A0jHfQadPzchIKNDPdwM_Jx0NuaftnwZTtLiSP4-gmnJdkVWukNFyfBBvQT-skyIw0DZgVFAfQxzmliIPdx7Bz8dEysKs2u7UHbXbVZqG1RVsp-3DMX7r17X_R0VMBPh8ALP_2EDDaJwW--Ijos-3ncKrD8wBfDK0y7_ER03Ze4lScWGZTY8H-XEdnnRxQAIxr4P8AM5q_9g</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Rinaldi, Fabio</creator><creator>Schneider, Gerold</creator><creator>Kaljurand, Kaarel</creator><creator>Hess, Michael</creator><creator>Andronis, Christos</creator><creator>Konstandi, Ourania</creator><creator>Persidis, Andreas</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070201</creationdate><title>Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach</title><author>Rinaldi, Fabio ; Schneider, Gerold ; Kaljurand, Kaarel ; Hess, Michael ; Andronis, Christos ; Konstandi, Ourania ; Persidis, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-76b0a2b54fd5544ac659f73f0869c4e4009a9a79604213b0b79d3213460719bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Arabidopsis thaliana</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Biomedical literature</topic><topic>Databases, Factual</topic><topic>Dependency parsing</topic><topic>Humans</topic><topic>Information extraction</topic><topic>Internal Medicine</topic><topic>Linguistics</topic><topic>Mammals</topic><topic>Other</topic><topic>Periodicals as Topic</topic><topic>Plant Proteins</topic><topic>Protein interactions</topic><topic>Proteins - chemistry</topic><topic>Proteins - physiology</topic><topic>Publishing</topic><topic>Semantics</topic><topic>Text mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rinaldi, Fabio</creatorcontrib><creatorcontrib>Schneider, Gerold</creatorcontrib><creatorcontrib>Kaljurand, Kaarel</creatorcontrib><creatorcontrib>Hess, Michael</creatorcontrib><creatorcontrib>Andronis, Christos</creatorcontrib><creatorcontrib>Konstandi, Ourania</creatorcontrib><creatorcontrib>Persidis, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rinaldi, Fabio</au><au>Schneider, Gerold</au><au>Kaljurand, Kaarel</au><au>Hess, Michael</au><au>Andronis, Christos</au><au>Konstandi, Ourania</au><au>Persidis, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2007-02-01</date><risdate>2007</risdate><volume>39</volume><issue>2</issue><spage>127</spage><epage>136</epage><pages>127-136</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Summary Objective The amount of new discoveries (as published in the scientific literature) in the biomedical area is growing at an exponential rate. This growth makes it very difficult to filter the most relevant results, and thus the extraction of the core information becomes very expensive. Therefore, there is a growing interest in text processing approaches that can deliver selected information from scientific publications, which can limit the amount of human intervention normally needed to gather those results. Materials and methods This paper presents and evaluates an approach aimed at automating the process of extracting functional relations (e.g. interactions between genes and proteins) from scientific literature in the biomedical domain. The approach, using a novel dependency-based parser, is based on a complete syntactic analysis of the corpus. Results We have implemented a state-of-the-art text mining system for biomedical literature, based on a deep-linguistic, full-parsing approach. The results are validated on two different corpora: the manually annotated genomics information access (GENIA) corpus and the automatically annotated arabidopsis thaliana circadian rhythms (ATCR) corpus. Conclusion We show how a deep-linguistic approach (contrary to common belief) can be used in a real world text mining application, offering high-precision relation extraction, while at the same time retaining a sufficient recall.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17052900</pmid><doi>10.1016/j.artmed.2006.08.005</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 2007-02, Vol.39 (2), p.127-136
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_68955937
source ScienceDirect Freedom Collection 2022-2024
subjects Animals
Arabidopsis thaliana
Artificial Intelligence
Automation
Biomedical literature
Databases, Factual
Dependency parsing
Humans
Information extraction
Internal Medicine
Linguistics
Mammals
Other
Periodicals as Topic
Plant Proteins
Protein interactions
Proteins - chemistry
Proteins - physiology
Publishing
Semantics
Text mining
title Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20of%20relations%20between%20proteins%20over%20biomedical%20scientific%20literature%20using%20a%20deep-linguistic%20approach&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Rinaldi,%20Fabio&rft.date=2007-02-01&rft.volume=39&rft.issue=2&rft.spage=127&rft.epage=136&rft.pages=127-136&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2006.08.005&rft_dat=%3Cproquest_cross%3E68955937%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c543t-76b0a2b54fd5544ac659f73f0869c4e4009a9a79604213b0b79d3213460719bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19592090&rft_id=info:pmid/17052900&rfr_iscdi=true