Loading…

A simultaneous EEG–fMRI study of painful electric stimulation

Together with a detailed behavioral analysis, simultaneous measurement of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) permits a better elucidation of cortical pain processing. We applied painful electrical stimulation to 6 healthy subjects and acquired fMRI simultan...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2007-02, Vol.34 (4), p.1428-1437
Main Authors: Christmann, Christoph, Koeppe, Caroline, Braus, Dieter F., Ruf, Matthias, Flor, Herta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Together with a detailed behavioral analysis, simultaneous measurement of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) permits a better elucidation of cortical pain processing. We applied painful electrical stimulation to 6 healthy subjects and acquired fMRI simultaneously with an EEG measurement. The subjects rated various stimulus properties and the individual affective state. Stimulus-correlated BOLD effects were found in the primary and secondary somatosensory areas (SI and SII), the operculum, the insula, the supplementary motor area (SMA proper), the cerebellum, and posterior parts of the anterior cingulate gyrus (ACC). Perceived pain intensity was positively correlated with activation in these areas. Higher unpleasantness rating was associated with suppression of activity in areas known to be involved in stimulus categorization and representation (ventral premotor cortex, PCC, parietal operculum, insula) and enhanced activation in areas initiating, propagating, and executing motor reactions (ACC, SMA proper, cerebellum, primary motor cortex). Concordant dipole localizations in SI and ACC were modeled. Using the dipole strength in SI, the network was restricted to SI. The BOLD signal change in ACC was positively correlated to the individual dipole strength of the source in ACC thus revealing a close relationship of BOLD signal and possibly underlying neuronal electrical activity in SI and the ACC. The BOLD signal change decreased in SI over time. Dipole strength of the ACC source decreased over the experiment and increased during the stimulation block suggesting sensitization and habituation effects in these areas.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2006.11.006