Loading…
Nitric oxide induces SOCS-1 expression in human monocytes in a TNF-α-dependent manner
In contrast to the thoroughly characterized mechanisms of positive regulation within cytokine signaling pathways, our knowledge of negative feedback loops is comparatively sparse. We and others have previously reported that IRAK-M down-regulates inflammatory responses to multiple stimuli. In particu...
Saved in:
Published in: | Journal of endotoxin research 2006-10, Vol.12 (5), p.296-306 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In contrast to the thoroughly characterized mechanisms of positive regulation within cytokine signaling pathways, our knowledge of negative feedback loops is comparatively sparse. We and others have previously reported that IRAK-M down-regulates inflammatory responses to multiple stimuli. In particular, we could show that the nitric oxide (NO) donor, GSNO, induces IRAK-M overexpression in human monocytes. Here we study the expression of another important negative regulator of cytokine signaling, SOCS-1, in human monocytes exposed to GSNO. The NO donor induced significant levels of SOCS-1 mRNA and protein, 6 h and 16 h after stimulation, respectively. Monocytes stimulated with GSNO for longer periods (24 h and 48 h) failed to express IL-6 and IP-10 upon LPS challenge. In addition, and in line with previous reports of NO-mediated induction of TNF-α, we have found that exposure to this cytokine induces SOCS-1 mRNA in human monocytes. A blocking antibody against TNF-α impaired SOCS-1 expression upon GSNO treatment and re-instated IL-6 and IP-10 mRNA levels after LPS challenge in cultures pretreated with the NO donor. We conclude that NO stimulates SOCS-1 overexpression in a pathway at least partially regulated by TNF-α. |
---|---|
ISSN: | 0968-0519 |
DOI: | 10.1177/09680519060120050501 |