Loading…
Adsorption of diblock copolymers on stripe-patterned surfaces
We present the results of extensive Monte Carlo simulations of diblock copolymers adsorbed on stripe-patterned surfaces of various widths. We have found that the width of the stripe pattern is an important parameter which dictates favorable recognition on the surface. For certain stripe widths, the...
Saved in:
Published in: | The Journal of chemical physics 2006-10, Vol.125 (15), p.154701-154701-8 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the results of extensive Monte Carlo simulations of diblock copolymers adsorbed on stripe-patterned surfaces of various widths. We have found that the width of the stripe pattern is an important parameter which dictates favorable recognition on the surface. For certain stripe widths, the adsorption of diblock copolymers to striped surfaces exhibits two transitions. The process involves recognition of the surface pattern by the diblock copolymer which follows a two step process in which the first block getting adsorbed to the appropriate pattern on the surface, without any recognition of the surface pattern, followed by the adsorption of the second block, where a reorganization process happens. For small widths and also for higher widths, the chain behaves just like a homopolymer where the twofold adsorbing process changes to the typical homopolymer adsorption. We have also found that there exists an optimal width of the stripes, independent of the chain length, where the recognition on the surface pattern is most favored. The characteristic temperature of the adsorption of the second block with weaker interactions is found to be independent of the chain length at this optimal width, proving that only local rearrangements take place after the first step. Some of our results describing the thermodynamics compare very well with the recent semianalytical approach of
Kriksin
[
J. Chem. Phys.
122
,
114703
(
2005
)]
on multiblock copolymers on heterogeneous surfaces. We also present some interesting conformational properties of the copolymer chain near the stripe-patterned surface. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2360267 |