Loading…
plant porphyria related to defects in plastid import of protochlorophyllide oxidoreductase A [Erratum: 2010, Mar. 23, v. 107, no. 12, p. 5693.]
The plastid envelope of higher plant chloroplasts is a focal point of plant metabolism. It is involved in numerous pathways, including tetrapyrrole biosynthesis and protein translocation. Chloroplasts need to import a large number of proteins from the cytosol because most are encoded in the nucleus....
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2007-02, Vol.104 (6), p.2019-2023 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The plastid envelope of higher plant chloroplasts is a focal point of plant metabolism. It is involved in numerous pathways, including tetrapyrrole biosynthesis and protein translocation. Chloroplasts need to import a large number of proteins from the cytosol because most are encoded in the nucleus. Here we report that a loss-of-function mutation in the outer plastid envelope 16-kDa protein (oep16) gene causes a conditional seedling lethal phenotype related to defects in import and assembly of NADPH:protochlorophyllide (Pchlide) oxidoreductase A. In the isolated knockout mutant of Arabidopsis thaliana, excess Pchlide accumulated in the dark operated as photosensitizer and provoked cell death during greening. Our results highlight the essential role of the substrate-dependent plastid import pathway of precursor Pchlide oxidoreductase A for seedling survival and the avoidance of developmentally programmed porphyria in higher plants. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0610934104 |