Loading…

Nonlinear Optical Properties and Excited-State Dynamics of Highly Symmetric Expanded Porphyrins

A strong correlation among calculated Nucleus-Independent Chemical Shift (NICS) values, molecular planarity, and the observed two-photon absorption (TPA) values was found for a series of closely matched expanded porphyrins. The expanded porphyrins in question consisted of [26]hexaphyrin, [28]hexaphy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2006-11, Vol.128 (43), p.14128-14134
Main Authors: Yoon, Zin Seok, Kwon, Jung Ho, Yoon, Min-Chul, Koh, Mi Kyoung, Noh, Su Bum, Sessler, Jonathan L, Lee, Jeong Tae, Seidel, Daniel, Aguilar, Apolonio, Shimizu, Soji, Suzuki, Masaaki, Osuka, Atsuhiro, Kim, Dongho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A strong correlation among calculated Nucleus-Independent Chemical Shift (NICS) values, molecular planarity, and the observed two-photon absorption (TPA) values was found for a series of closely matched expanded porphyrins. The expanded porphyrins in question consisted of [26]hexaphyrin, [28]hexaphyrin, rubyrin, amethyrin, cyclo[6]pyrrole, cyclo[7]pyrrole, and cyclo[8]pyrrole containing 22, 24, 26, 28, and 30 π-electrons. Two of the systems, [28]hexaphyrin and amethyrin, were considered to be antiaromatic as judged from a simple application of Hückel's [4n + 2] rule. These systems displayed positive NICS(0) values (+43.5 and +17.1 ppm, respectively) and gave rise to TPA values of 2600 and 3100 GM, respectively. By contrast, a set of congeners containing 22, 26, and 30 π-electrons (cyclo[n]pyrrole, n = 6, 7, and 8, respectively) were characterized by a linear correlation between the NICS and TPA values. In the case of the oligopyrrolic macrocycles containing 26 π-electron systems, a further correlation between the molecular structure and various markers associated with aromaticity was seen. In particular, a decrease in the excited state lifetimes and an increase in the TPA values were seen as the flexibility of the systems increased. Based on the findings presented here, it is proposed that various readily measurable optical properties, including the two-photon absorption cross-section, can provide a quantitative experimental measure of aromaticity in macrocyclic π-conjugated systems.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja064773k