Loading…

Anti-Inflammatory Effects of 4-Phenyl-3-butenoic Acid and 5-(Acetylamino)-4-oxo-6-phenyl-2-hexenoic Acid Methyl Ester, Potential Inhibitors of Neuropeptide Bioactivation

Substance P (SP) and calcitonin gene-related peptide (CGRP) are well established mediators of inflammation. Therefore, inhibition of the biosynthesis of these neuropeptides is an attractive potential strategy for pharmacological intervention against a number of inflammatory diseases. The final step...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of pharmacology and experimental therapeutics 2007-03, Vol.320 (3), p.1171-1177
Main Authors: Bauer, John D, Sunman, Jeffrey A, Foster, Michael S, Thompson, Jeremy R, Ogonowski, Alison A, Cutler, Stephen J, May, Sheldon W, Pollock, Stanley H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Substance P (SP) and calcitonin gene-related peptide (CGRP) are well established mediators of inflammation. Therefore, inhibition of the biosynthesis of these neuropeptides is an attractive potential strategy for pharmacological intervention against a number of inflammatory diseases. The final step in the biosynthesis of SP and CGRP is the conversion of their glycine-extended precursors to the active amidated peptide, and this process is catalyzed by sequential action of the enzymes peptidylglycine α-monooxygenase (PAM) and peptidylamidoglycolate lyase. We have demonstrated previously that 4-phenyl-3-butenoic acid (PBA) is a PAM inhibitor, and we have also shown that in vivo inhibition of serum PAM by PBA correlates with this compound's ability to inhibit carrageenan-induced edema in the rat. Here we demonstrate the ability of PBA to inhibit all three phases of adjuvant-induced polyarthritis (AIP) in rats; this represents the first time that an amidation inhibitor has been shown to be active in a model of chronic inflammation. We recently introduced 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid (AOPHA) as one of a new series of mechanism-based amidation inhibitors. We now report for the first time that AOPHA and its methyl ester (AOPHA-Me) are active inhibitors of serum PAM in vivo, and we show that AOPHA-Me correspondingly inhibits carrageenan-induced edema in rats in a dose-dependent manner. Neither PBA nor AOPHA-Me exhibits significant cyclooxygenase (COX) inhibition in vitro; thus, the anti-inflammatory activities of PBA and AOPHA-Me are apparently not a consequence of COX inhibition. We discuss possible pharmacological mechanisms that may account for the activities of these new anti-inflammatory compounds.
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.106.110940