Loading…

Time-dependent modulation of rat serum paraoxonase 1 activity by fasting

High-density lipoprotein-associated paraoxonase 1 (PON1) protects the endothelium from the pro-oxidant activity of oxidised low-density lipoprotein. Whereas fasting has been related to increased oxidative stress, intermittent fasting and caloric restriction are associated to increased resistance to...

Full description

Saved in:
Bibliographic Details
Published in:Pflügers Archiv 2007-03, Vol.453 (6), p.831-837
Main Authors: Thomàs-Moyà, Elena, Nadal-Casellas, Antònia, Gianotti, Magdalena, Lladó, Isabel, Proenza, Ana María
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-density lipoprotein-associated paraoxonase 1 (PON1) protects the endothelium from the pro-oxidant activity of oxidised low-density lipoprotein. Whereas fasting has been related to increased oxidative stress, intermittent fasting and caloric restriction are associated to increased resistance to oxidative injury. Taking into consideration that serum PON1 activity is modulated by a restriction of caloric intake and because there is no evidence regarding PON1 response to total food deprivation, we investigated whether PON1 activity is involved in the response aimed to counteract the greater oxidative stress associated to fasting and whether serum PON1 activity is altered by the length of food deprivation. Male Wistar rats were randomly divided into five groups: fed and 6-, 12-, 24- or 48-h fasted rats. Serum PON1 activity increases within the first hours of fasting, representing a prompt adaptation designed to attenuate blood lipid peroxidation that cannot be sustained when fasting is prolonged. This PON1 response to early fasting could be part of the mechanisms triggered by periodically repeated short periods of food deprivation - intermittent fasting - which result in increased resistance to stress by stimulating antioxidant defences.
ISSN:0031-6768
1432-2013
DOI:10.1007/s00424-006-0174-2