Loading…
Architecture of a Biocompatible Supramolecular Material by Supersaturation-Driven Fabrication of its Fiber Network
The architecture of a biocompatible organogel formed by gelation of a small molecule organic gelator, N-lauroyl-l-glutamic acid di-n-butylamide, in isostearyl alcohol was investigated based on a supersaturation-driven crystallographic mismatch branching mechanism. By controlling the supersaturation...
Saved in:
Published in: | The journal of physical chemistry. B 2005-12, Vol.109 (51), p.24231-24235 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The architecture of a biocompatible organogel formed by gelation of a small molecule organic gelator, N-lauroyl-l-glutamic acid di-n-butylamide, in isostearyl alcohol was investigated based on a supersaturation-driven crystallographic mismatch branching mechanism. By controlling the supersaturation of the system, the correlation length that determines the mesh size of the fiber network was finely tuned and the rheological properties of the gel were engineered. This approach is of considerable significance for many gel-based applications, such as controlled release of drugs that requires precise control of the mesh size. A direct cryo-transmission electron microscopy (TEM) imaging technique capable of preserving the network structure was used to visualize its nanostructure. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp054676y |