Loading…

Dietary and Genetic Control of Glucose Transporter 2 Glycosylation Promotes Insulin Secretion in Suppressing Diabetes

Pancreatic β cell-surface expression of glucose transporter 2 (Glut-2) is essential for glucose-stimulated insulin secretion, thereby controlling blood glucose homeostasis in response to dietary intake. We show that the murine GlcNAcT-IVa glycosyltransferase is required for Glut-2 residency on the β...

Full description

Saved in:
Bibliographic Details
Published in:Cell 2005-12, Vol.123 (7), p.1307-1321
Main Authors: Ohtsubo, Kazuaki, Takamatsu, Shinji, Minowa, Mari T., Yoshida, Aruto, Takeuchi, Makoto, Marth, Jamey D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pancreatic β cell-surface expression of glucose transporter 2 (Glut-2) is essential for glucose-stimulated insulin secretion, thereby controlling blood glucose homeostasis in response to dietary intake. We show that the murine GlcNAcT-IVa glycosyltransferase is required for Glut-2 residency on the β cell surface by constructing a cell-type- and glycoprotein-specific N-glycan ligand for pancreatic lectin receptors. Loss of GlcNAcT-IVa, or the addition of glycan-ligand mimetics, attenuates Glut-2 cell-surface half-life, provoking endocytosis with redistribution into endosomes and lysosomes. The ensuing impairment of glucose-stimulated insulin secretion leads to metabolic dysfunction diagnostic of type 2 diabetes. Remarkably, the induction of diabetes by chronic ingestion of a high-fat diet is associated with reduced GlcNAcT-IV expression and attenuated Glut-2 glycosylation coincident with Glut-2 endocytosis. We infer that β cell glucose-transporter glycosylation mediates a link between diet and insulin production that typically suppresses the pathogenesis of type 2 diabetes.
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2005.09.041