Loading…

Thermal Dependence of Thermally Induced Protein Spherulite Formation and Growth: Kinetics of β-lactoglobulin and Insulin

Amyloid fibril forming proteins have been related to some neurodegenerative diseases and are not fully understood. In some such systems, these amyloid fibrils have been found to form radially oriented spherulite structures. The thermal dependence of formation and growth of these spherulite structure...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2007-12, Vol.8 (12), p.3930-3937
Main Authors: Domike, Kristin R, Donald, Athene M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Amyloid fibril forming proteins have been related to some neurodegenerative diseases and are not fully understood. In some such systems, these amyloid fibrils have been found to form radially oriented spherulite structures. The thermal dependence of formation and growth of these spherulite structures in two model protein systems, β-lactoglobulin and insulin at low pH aqueous and high temperature conditions, have been monitored with time-lapse optical microscopy and quantified. A population-based polymerization reaction model was developed and applied to the experimental data with excellent agreement. While spherulites in the insulin solutions formed and grew at approximately 25× the rate of spherulites in the β-lactoglobulin solutions, the temperature dependence and activation energies of both systems were found to be very similar to one another, suggesting that the underlying rate-limiting mechanisms for both formation and growth are consistent across the two systems. The similarity of both of these amyloid fibril forming protein systems provides confidence in their use as model systems for extrapolating understanding to similar systems involved in neurodegenerative diseases.
ISSN:1525-7797
1526-4602
DOI:10.1021/bm7009224