Loading…

Laser cooling of vibrational degrees of freedom of a molecular system

We consider the cooling of vibrational degrees of freedom in a photoinduced excited electronic state of a model molecular system. For the various parameters of the potential surfaces of the ground and excited electronic states and depending on the excitation frequency of a single-mode laser light, t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2005-09, Vol.123 (11), p.114304-114304-15
Main Authors: Banerjee, Sumana, Gangopadhyay, Gautam
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the cooling of vibrational degrees of freedom in a photoinduced excited electronic state of a model molecular system. For the various parameters of the potential surfaces of the ground and excited electronic states and depending on the excitation frequency of a single-mode laser light, the average energy or average vibrational temperature of the excited state passes through a minimum. The amount of cooling is quantified in terms of the overlap integral between the ground and excited electronic states of the molecule. We have given an approach to calculate the Franck-Condon factor for a multimode displaced-distorted-rotated oscillator surface of the molecular system. This is subsequently used to study the effect of displacement, distortion, and Duschinsky rotation on the vibrational cooling in the excited state. The absorption spectra and also the average energy or the effective temperature of the excited electronic state are studied for the above model molecular system. Considering the non-Condon effect for the symmetry-forbidden transitions, we have discussed the absorption spectra and average temperature in the excited-state vibrational manifold.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.2032928