Loading…
Solution-Processed Organic Field-Effect Transistors and Unipolar Inverters Using Self-Assembled Interface Dipoles on Gate Dielectrics
Self-assembled monolayers (SAMs) of polarized and nonpolarized organosilane molecules on gate insulators induced tunable threshold voltage shifting and current modulation in organic field-effect transistors (OFETs) made from solution-deposited 5,5‘-bis(4-hexylphenyl)-2,2‘-bithiophene (6PTTP6), defin...
Saved in:
Published in: | Langmuir 2007-12, Vol.23 (26), p.13223-13231 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Self-assembled monolayers (SAMs) of polarized and nonpolarized organosilane molecules on gate insulators induced tunable threshold voltage shifting and current modulation in organic field-effect transistors (OFETs) made from solution-deposited 5,5‘-bis(4-hexylphenyl)-2,2‘-bithiophene (6PTTP6), defining depletion-mode and enhancement-mode operation. p-Channel inverters were made from pairs of OFETs with an enhancement-mode driver and a depletion-mode load to implement full-swing and high-gain organic logic circuits. The experimental results indicate that the shift of the transfer characteristics is governed by the built-in electric field of the SAM. The effect of surface functional groups affixed to the dielectric substrate on the grain appearance and film mobility is also determined. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la702409m |