Loading…

Solution-Processed Organic Field-Effect Transistors and Unipolar Inverters Using Self-Assembled Interface Dipoles on Gate Dielectrics

Self-assembled monolayers (SAMs) of polarized and nonpolarized organosilane molecules on gate insulators induced tunable threshold voltage shifting and current modulation in organic field-effect transistors (OFETs) made from solution-deposited 5,5‘-bis(4-hexylphenyl)-2,2‘-bithiophene (6PTTP6), defin...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2007-12, Vol.23 (26), p.13223-13231
Main Authors: Huang, Cheng, Katz, Howard E., West, James E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Self-assembled monolayers (SAMs) of polarized and nonpolarized organosilane molecules on gate insulators induced tunable threshold voltage shifting and current modulation in organic field-effect transistors (OFETs) made from solution-deposited 5,5‘-bis(4-hexylphenyl)-2,2‘-bithiophene (6PTTP6), defining depletion-mode and enhancement-mode operation. p-Channel inverters were made from pairs of OFETs with an enhancement-mode driver and a depletion-mode load to implement full-swing and high-gain organic logic circuits. The experimental results indicate that the shift of the transfer characteristics is governed by the built-in electric field of the SAM. The effect of surface functional groups affixed to the dielectric substrate on the grain appearance and film mobility is also determined.
ISSN:0743-7463
1520-5827
DOI:10.1021/la702409m