Loading…

Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population

This article revisits Chao's (1989, Biometrics 45, 427-438) lower bound estimator for the size of a closed population in a mark-recapture experiment where the capture probabilities vary between animals (model Mh). First, an extension of the lower bound to models featuring a time effect and hete...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 2007-12, Vol.63 (4), p.999-1006
Main Authors: Rivest, Louis-Paul, Baillargeon, Sophie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3
cites cdi_FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3
container_end_page 1006
container_issue 4
container_start_page 999
container_title Biometrics
container_volume 63
creator Rivest, Louis-Paul
Baillargeon, Sophie
description This article revisits Chao's (1989, Biometrics 45, 427-438) lower bound estimator for the size of a closed population in a mark-recapture experiment where the capture probabilities vary between animals (model Mh). First, an extension of the lower bound to models featuring a time effect and heterogeneity in capture probabilities ($M_{th}$) is proposed. The biases of these lower bounds are shown to be a function of the heterogeneity parameter for several loglinear models for$M_{th}$. Small-sample bias reduction techniques for Chao's lower bound estimator are also derived. The application of the loglinear model underlying Chao's estimator when heterogeneity has been detected in the primary periods of a robust design is then investi- gated. A test for the null hypothesis that Chao's loglinear model provides unbiased abundance estimators is provided. The strategy of systematically using Chao's loglinear model in the primary periods of a robust design where heterogeneity has been detected is investigated in a Monte Carlo experiment. Its impact on the estimation of the population sizes and of the survival rates is evaluated in a Monte Carlo experiment. /// Cet article$r\acute{e}\acute{e}tudie$l'estimateur de la limite$inf\acute{e}rieure$de Chao (1989) pour l'effectif d'une population$ferm\acute{e}e$, pour des données de marquage-recapture avec$h\acute{e}t\acute{e}rog\acute{e}ndit\acute{e}$des$probabilit\acute{e}s$de capture entre individus ($mod\grave{e}le$Mh). Dans un premier temps, nous proposons une$g\acute{e}n\acute{e}ralisation}$de la limite$inf\acute{e}rieure$aux$mod\acute{e}les$comprenant à la fois un effet du temps et de$l'h\acute{e}t\acute{e}rog\acute{e}neit\acute{e}$de capture ($M_{th}$). Nous montrons que les biais de ce type d'estimateurs$d\acute{e}pendent$du$parametr\grave{e}$ $d'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$, pour plusieurs$modul\grave{e}s$log-$lin\acute{e}aires$de forme$M_{th}$. Nous proposons des techniques de$r\acute{e}duction$du biais pour petits échantillons, pour l'estimateur de la limite$infir\acute{e}eure$de Chao. Nous$\acute{e}tudions$ensuite l'application du$mod\grave{e}le$ $log-lin\acute{e}aire$de Chao, dans le cas d'un plan$d'exp\acute{e}rience$robuste où une$h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture dans les$p\acute{e}riodes$principales a$\acute{e}t\acute{e}$ $d\acute{e}tect\acute{e}e$. Nous proposons un test de l'hypothèse nulle que le$mod\grave{e}le$ $log-lin\acute{e}aire$de Chao fo
doi_str_mv 10.1111/j.1541-0420.2007.00779.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69064261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4541452</jstor_id><sourcerecordid>4541452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3</originalsourceid><addsrcrecordid>eNqNUUuP0zAQthCILQv_ACGLA5wS_HZy4LBEZVnUZSseAnGxXMfRJqRxiBPR5dczaasiccLSyB59D818RghTklI4r5qUSkETIhhJGSE6hdJ5uruHFifgPloQQlTCBf12hh7F2ECbS8IeojOqBZOKywX6ftH3be3sWIcuYtuVeLkbfRf3bahwcWvDy4ivw9Z3I17Gsd7aMQy4ghpvPf5U__Yzz-KiDdGXeB36qd3bPUYPKttG_-R4n6Mvb5efi3fJ6ubyqrhYJU5Inie5llRJWvKSC6WdsF5VxFWSbJSmXFjGbEap18RlG-oyApzKVplzsAzLmeXn6MXBtx_Cz8nH0Wzr6Hzb2s6HKRqVEyWYokB8_g-xCdPQwWyGUZ5xCfMAKTuQ3BBiHHxl-gF2Hu4MJWYO3zRmztjMGZs5fLMP3-xA-uzoP222vvwrPKYNhNcHwq-69Xf_bWzeXN1cwwv0Tw_6JsIfnPQCVEIygJMDXMfR706wHX4YpbmW5uuHS1Os16v3q4_a5PwPW3Gptg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213835453</pqid></control><display><type>article</type><title>Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><source>SPORTDiscus with Full Text</source><creator>Rivest, Louis-Paul ; Baillargeon, Sophie</creator><creatorcontrib>Rivest, Louis-Paul ; Baillargeon, Sophie</creatorcontrib><description>This article revisits Chao's (1989, Biometrics 45, 427-438) lower bound estimator for the size of a closed population in a mark-recapture experiment where the capture probabilities vary between animals (model Mh). First, an extension of the lower bound to models featuring a time effect and heterogeneity in capture probabilities ($M_{th}$) is proposed. The biases of these lower bounds are shown to be a function of the heterogeneity parameter for several loglinear models for$M_{th}$. Small-sample bias reduction techniques for Chao's lower bound estimator are also derived. The application of the loglinear model underlying Chao's estimator when heterogeneity has been detected in the primary periods of a robust design is then investi- gated. A test for the null hypothesis that Chao's loglinear model provides unbiased abundance estimators is provided. The strategy of systematically using Chao's loglinear model in the primary periods of a robust design where heterogeneity has been detected is investigated in a Monte Carlo experiment. Its impact on the estimation of the population sizes and of the survival rates is evaluated in a Monte Carlo experiment. /// Cet article$r\acute{e}\acute{e}tudie$l'estimateur de la limite$inf\acute{e}rieure$de Chao (1989) pour l'effectif d'une population$ferm\acute{e}e$, pour des données de marquage-recapture avec$h\acute{e}t\acute{e}rog\acute{e}ndit\acute{e}$des$probabilit\acute{e}s$de capture entre individus ($mod\grave{e}le$Mh). Dans un premier temps, nous proposons une$g\acute{e}n\acute{e}ralisation}$de la limite$inf\acute{e}rieure$aux$mod\acute{e}les$comprenant à la fois un effet du temps et de$l'h\acute{e}t\acute{e}rog\acute{e}neit\acute{e}$de capture ($M_{th}$). Nous montrons que les biais de ce type d'estimateurs$d\acute{e}pendent$du$parametr\grave{e}$ $d'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$, pour plusieurs$modul\grave{e}s$log-$lin\acute{e}aires$de forme$M_{th}$. Nous proposons des techniques de$r\acute{e}duction$du biais pour petits échantillons, pour l'estimateur de la limite$infir\acute{e}eure$de Chao. Nous$\acute{e}tudions$ensuite l'application du$mod\grave{e}le$ $log-lin\acute{e}aire$de Chao, dans le cas d'un plan$d'exp\acute{e}rience$robuste où une$h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture dans les$p\acute{e}riodes$principales a$\acute{e}t\acute{e}$ $d\acute{e}tect\acute{e}e$. Nous proposons un test de l'hypothèse nulle que le$mod\grave{e}le$ $log-lin\acute{e}aire$de Chao fournit des estimateurs sans biais de l'abondance. Nous$\acute{e}valuons$par des simulations de type Monte Carlo la$strat\acute{e}gie$consistant à utiliser$syst\acute{e}matiquement$le$mod\grave{e}le$ $log-lin\acute{e}aire$de Chao entre$p\acute{e}riodes$primaires, dans un plan$d'exp\acute{e}rience$robuste où de$l'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture a$\acute{e}t\acute{e}$ $d\acute{e}tect\acute{e}e$. De la même$mani\grave{e}re$, nous$\acute{e}valuons$l'impact de cette$strat\acute{e}gie$sur l'estimation des effectifs de populations et des$probabilit\acute{e}s$de survie.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2007.00779.x</identifier><identifier>PMID: 17425635</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Algorithms ; Animal Identification Systems - methods ; Animal populations ; Animals ; Biometrics ; Biometry - methods ; Chaos theory ; Computer Simulation ; Data Interpretation, Statistical ; Estimation bias ; Estimation methods ; Estimators ; Log-convexity ; Loglinear models ; Mathematical independent variables ; Measurement techniques ; Mixture models ; Modeling ; Models, Biological ; Models, Statistical ; Monte Carlo simulation ; Multinomial distribution ; Parametric models ; Poisson regression ; Population Density ; Population Dynamics ; Population estimates ; Population size ; Research methodology ; Robust design ; Sample Size</subject><ispartof>Biometrics, 2007-12, Vol.63 (4), p.999-1006</ispartof><rights>Copyright 2007 The International Biometric Society</rights><rights>2007, The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3</citedby><cites>FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4541452$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4541452$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17425635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rivest, Louis-Paul</creatorcontrib><creatorcontrib>Baillargeon, Sophie</creatorcontrib><title>Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>This article revisits Chao's (1989, Biometrics 45, 427-438) lower bound estimator for the size of a closed population in a mark-recapture experiment where the capture probabilities vary between animals (model Mh). First, an extension of the lower bound to models featuring a time effect and heterogeneity in capture probabilities ($M_{th}$) is proposed. The biases of these lower bounds are shown to be a function of the heterogeneity parameter for several loglinear models for$M_{th}$. Small-sample bias reduction techniques for Chao's lower bound estimator are also derived. The application of the loglinear model underlying Chao's estimator when heterogeneity has been detected in the primary periods of a robust design is then investi- gated. A test for the null hypothesis that Chao's loglinear model provides unbiased abundance estimators is provided. The strategy of systematically using Chao's loglinear model in the primary periods of a robust design where heterogeneity has been detected is investigated in a Monte Carlo experiment. Its impact on the estimation of the population sizes and of the survival rates is evaluated in a Monte Carlo experiment. /// Cet article$r\acute{e}\acute{e}tudie$l'estimateur de la limite$inf\acute{e}rieure$de Chao (1989) pour l'effectif d'une population$ferm\acute{e}e$, pour des données de marquage-recapture avec$h\acute{e}t\acute{e}rog\acute{e}ndit\acute{e}$des$probabilit\acute{e}s$de capture entre individus ($mod\grave{e}le$Mh). Dans un premier temps, nous proposons une$g\acute{e}n\acute{e}ralisation}$de la limite$inf\acute{e}rieure$aux$mod\acute{e}les$comprenant à la fois un effet du temps et de$l'h\acute{e}t\acute{e}rog\acute{e}neit\acute{e}$de capture ($M_{th}$). Nous montrons que les biais de ce type d'estimateurs$d\acute{e}pendent$du$parametr\grave{e}$ $d'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$, pour plusieurs$modul\grave{e}s$log-$lin\acute{e}aires$de forme$M_{th}$. Nous proposons des techniques de$r\acute{e}duction$du biais pour petits échantillons, pour l'estimateur de la limite$infir\acute{e}eure$de Chao. Nous$\acute{e}tudions$ensuite l'application du$mod\grave{e}le$ $log-lin\acute{e}aire$de Chao, dans le cas d'un plan$d'exp\acute{e}rience$robuste où une$h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture dans les$p\acute{e}riodes$principales a$\acute{e}t\acute{e}$ $d\acute{e}tect\acute{e}e$. Nous proposons un test de l'hypothèse nulle que le$mod\grave{e}le$ $log-lin\acute{e}aire$de Chao fournit des estimateurs sans biais de l'abondance. Nous$\acute{e}valuons$par des simulations de type Monte Carlo la$strat\acute{e}gie$consistant à utiliser$syst\acute{e}matiquement$le$mod\grave{e}le$ $log-lin\acute{e}aire$de Chao entre$p\acute{e}riodes$primaires, dans un plan$d'exp\acute{e}rience$robuste où de$l'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture a$\acute{e}t\acute{e}$ $d\acute{e}tect\acute{e}e$. De la même$mani\grave{e}re$, nous$\acute{e}valuons$l'impact de cette$strat\acute{e}gie$sur l'estimation des effectifs de populations et des$probabilit\acute{e}s$de survie.</description><subject>Algorithms</subject><subject>Animal Identification Systems - methods</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Chaos theory</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Log-convexity</subject><subject>Loglinear models</subject><subject>Mathematical independent variables</subject><subject>Measurement techniques</subject><subject>Mixture models</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Monte Carlo simulation</subject><subject>Multinomial distribution</subject><subject>Parametric models</subject><subject>Poisson regression</subject><subject>Population Density</subject><subject>Population Dynamics</subject><subject>Population estimates</subject><subject>Population size</subject><subject>Research methodology</subject><subject>Robust design</subject><subject>Sample Size</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNUUuP0zAQthCILQv_ACGLA5wS_HZy4LBEZVnUZSseAnGxXMfRJqRxiBPR5dczaasiccLSyB59D818RghTklI4r5qUSkETIhhJGSE6hdJ5uruHFifgPloQQlTCBf12hh7F2ECbS8IeojOqBZOKywX6ftH3be3sWIcuYtuVeLkbfRf3bahwcWvDy4ivw9Z3I17Gsd7aMQy4ghpvPf5U__Yzz-KiDdGXeB36qd3bPUYPKttG_-R4n6Mvb5efi3fJ6ubyqrhYJU5Inie5llRJWvKSC6WdsF5VxFWSbJSmXFjGbEap18RlG-oyApzKVplzsAzLmeXn6MXBtx_Cz8nH0Wzr6Hzb2s6HKRqVEyWYokB8_g-xCdPQwWyGUZ5xCfMAKTuQ3BBiHHxl-gF2Hu4MJWYO3zRmztjMGZs5fLMP3-xA-uzoP222vvwrPKYNhNcHwq-69Xf_bWzeXN1cwwv0Tw_6JsIfnPQCVEIygJMDXMfR706wHX4YpbmW5uuHS1Os16v3q4_a5PwPW3Gptg</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Rivest, Louis-Paul</creator><creator>Baillargeon, Sophie</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200712</creationdate><title>Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population</title><author>Rivest, Louis-Paul ; Baillargeon, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Animal Identification Systems - methods</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Chaos theory</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Log-convexity</topic><topic>Loglinear models</topic><topic>Mathematical independent variables</topic><topic>Measurement techniques</topic><topic>Mixture models</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Monte Carlo simulation</topic><topic>Multinomial distribution</topic><topic>Parametric models</topic><topic>Poisson regression</topic><topic>Population Density</topic><topic>Population Dynamics</topic><topic>Population estimates</topic><topic>Population size</topic><topic>Research methodology</topic><topic>Robust design</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivest, Louis-Paul</creatorcontrib><creatorcontrib>Baillargeon, Sophie</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivest, Louis-Paul</au><au>Baillargeon, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2007-12</date><risdate>2007</risdate><volume>63</volume><issue>4</issue><spage>999</spage><epage>1006</epage><pages>999-1006</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>This article revisits Chao's (1989, Biometrics 45, 427-438) lower bound estimator for the size of a closed population in a mark-recapture experiment where the capture probabilities vary between animals (model Mh). First, an extension of the lower bound to models featuring a time effect and heterogeneity in capture probabilities ($M_{th}$) is proposed. The biases of these lower bounds are shown to be a function of the heterogeneity parameter for several loglinear models for$M_{th}$. Small-sample bias reduction techniques for Chao's lower bound estimator are also derived. The application of the loglinear model underlying Chao's estimator when heterogeneity has been detected in the primary periods of a robust design is then investi- gated. A test for the null hypothesis that Chao's loglinear model provides unbiased abundance estimators is provided. The strategy of systematically using Chao's loglinear model in the primary periods of a robust design where heterogeneity has been detected is investigated in a Monte Carlo experiment. Its impact on the estimation of the population sizes and of the survival rates is evaluated in a Monte Carlo experiment. /// Cet article$r\acute{e}\acute{e}tudie$l'estimateur de la limite$inf\acute{e}rieure$de Chao (1989) pour l'effectif d'une population$ferm\acute{e}e$, pour des données de marquage-recapture avec$h\acute{e}t\acute{e}rog\acute{e}ndit\acute{e}$des$probabilit\acute{e}s$de capture entre individus ($mod\grave{e}le$Mh). Dans un premier temps, nous proposons une$g\acute{e}n\acute{e}ralisation}$de la limite$inf\acute{e}rieure$aux$mod\acute{e}les$comprenant à la fois un effet du temps et de$l'h\acute{e}t\acute{e}rog\acute{e}neit\acute{e}$de capture ($M_{th}$). Nous montrons que les biais de ce type d'estimateurs$d\acute{e}pendent$du$parametr\grave{e}$ $d'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$, pour plusieurs$modul\grave{e}s$log-$lin\acute{e}aires$de forme$M_{th}$. Nous proposons des techniques de$r\acute{e}duction$du biais pour petits échantillons, pour l'estimateur de la limite$infir\acute{e}eure$de Chao. Nous$\acute{e}tudions$ensuite l'application du$mod\grave{e}le$ $log-lin\acute{e}aire$de Chao, dans le cas d'un plan$d'exp\acute{e}rience$robuste où une$h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture dans les$p\acute{e}riodes$principales a$\acute{e}t\acute{e}$ $d\acute{e}tect\acute{e}e$. Nous proposons un test de l'hypothèse nulle que le$mod\grave{e}le$ $log-lin\acute{e}aire$de Chao fournit des estimateurs sans biais de l'abondance. Nous$\acute{e}valuons$par des simulations de type Monte Carlo la$strat\acute{e}gie$consistant à utiliser$syst\acute{e}matiquement$le$mod\grave{e}le$ $log-lin\acute{e}aire$de Chao entre$p\acute{e}riodes$primaires, dans un plan$d'exp\acute{e}rience$robuste où de$l'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture a$\acute{e}t\acute{e}$ $d\acute{e}tect\acute{e}e$. De la même$mani\grave{e}re$, nous$\acute{e}valuons$l'impact de cette$strat\acute{e}gie$sur l'estimation des effectifs de populations et des$probabilit\acute{e}s$de survie.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>17425635</pmid><doi>10.1111/j.1541-0420.2007.00779.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2007-12, Vol.63 (4), p.999-1006
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_69064261
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online; SPORTDiscus with Full Text
subjects Algorithms
Animal Identification Systems - methods
Animal populations
Animals
Biometrics
Biometry - methods
Chaos theory
Computer Simulation
Data Interpretation, Statistical
Estimation bias
Estimation methods
Estimators
Log-convexity
Loglinear models
Mathematical independent variables
Measurement techniques
Mixture models
Modeling
Models, Biological
Models, Statistical
Monte Carlo simulation
Multinomial distribution
Parametric models
Poisson regression
Population Density
Population Dynamics
Population estimates
Population size
Research methodology
Robust design
Sample Size
title Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20and%20Extensions%20of%20Chao's%20Moment%20Estimator%20for%20the%20Size%20of%20a%20Closed%20Population&rft.jtitle=Biometrics&rft.au=Rivest,%20Louis-Paul&rft.date=2007-12&rft.volume=63&rft.issue=4&rft.spage=999&rft.epage=1006&rft.pages=999-1006&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2007.00779.x&rft_dat=%3Cjstor_proqu%3E4541452%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213835453&rft_id=info:pmid/17425635&rft_jstor_id=4541452&rfr_iscdi=true