Loading…
Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population
This article revisits Chao's (1989, Biometrics 45, 427-438) lower bound estimator for the size of a closed population in a mark-recapture experiment where the capture probabilities vary between animals (model Mh). First, an extension of the lower bound to models featuring a time effect and hete...
Saved in:
Published in: | Biometrics 2007-12, Vol.63 (4), p.999-1006 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3 |
container_end_page | 1006 |
container_issue | 4 |
container_start_page | 999 |
container_title | Biometrics |
container_volume | 63 |
creator | Rivest, Louis-Paul Baillargeon, Sophie |
description | This article revisits Chao's (1989, Biometrics 45, 427-438) lower bound estimator for the size of a closed population in a mark-recapture experiment where the capture probabilities vary between animals (model Mh). First, an extension of the lower bound to models featuring a time effect and heterogeneity in capture probabilities ($M_{th}$) is proposed. The biases of these lower bounds are shown to be a function of the heterogeneity parameter for several loglinear models for$M_{th}$. Small-sample bias reduction techniques for Chao's lower bound estimator are also derived. The application of the loglinear model underlying Chao's estimator when heterogeneity has been detected in the primary periods of a robust design is then investi- gated. A test for the null hypothesis that Chao's loglinear model provides unbiased abundance estimators is provided. The strategy of systematically using Chao's loglinear model in the primary periods of a robust design where heterogeneity has been detected is investigated in a Monte Carlo experiment. Its impact on the estimation of the population sizes and of the survival rates is evaluated in a Monte Carlo experiment. /// Cet article$r\acute{e}\acute{e}tudie$l'estimateur de la limite$inf\acute{e}rieure$de Chao (1989) pour l'effectif d'une population$ferm\acute{e}e$, pour des données de marquage-recapture avec$h\acute{e}t\acute{e}rog\acute{e}ndit\acute{e}$des$probabilit\acute{e}s$de capture entre individus ($mod\grave{e}le$Mh). Dans un premier temps, nous proposons une$g\acute{e}n\acute{e}ralisation}$de la limite$inf\acute{e}rieure$aux$mod\acute{e}les$comprenant à la fois un effet du temps et de$l'h\acute{e}t\acute{e}rog\acute{e}neit\acute{e}$de capture ($M_{th}$). Nous montrons que les biais de ce type d'estimateurs$d\acute{e}pendent$du$parametr\grave{e}$
$d'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$, pour plusieurs$modul\grave{e}s$log-$lin\acute{e}aires$de forme$M_{th}$. Nous proposons des techniques de$r\acute{e}duction$du biais pour petits échantillons, pour l'estimateur de la limite$infir\acute{e}eure$de Chao. Nous$\acute{e}tudions$ensuite l'application du$mod\grave{e}le$
$log-lin\acute{e}aire$de Chao, dans le cas d'un plan$d'exp\acute{e}rience$robuste où une$h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture dans les$p\acute{e}riodes$principales a$\acute{e}t\acute{e}$
$d\acute{e}tect\acute{e}e$. Nous proposons un test de l'hypothèse nulle que le$mod\grave{e}le$
$log-lin\acute{e}aire$de Chao fo |
doi_str_mv | 10.1111/j.1541-0420.2007.00779.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69064261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4541452</jstor_id><sourcerecordid>4541452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3</originalsourceid><addsrcrecordid>eNqNUUuP0zAQthCILQv_ACGLA5wS_HZy4LBEZVnUZSseAnGxXMfRJqRxiBPR5dczaasiccLSyB59D818RghTklI4r5qUSkETIhhJGSE6hdJ5uruHFifgPloQQlTCBf12hh7F2ECbS8IeojOqBZOKywX6ftH3be3sWIcuYtuVeLkbfRf3bahwcWvDy4ivw9Z3I17Gsd7aMQy4ghpvPf5U__Yzz-KiDdGXeB36qd3bPUYPKttG_-R4n6Mvb5efi3fJ6ubyqrhYJU5Inie5llRJWvKSC6WdsF5VxFWSbJSmXFjGbEap18RlG-oyApzKVplzsAzLmeXn6MXBtx_Cz8nH0Wzr6Hzb2s6HKRqVEyWYokB8_g-xCdPQwWyGUZ5xCfMAKTuQ3BBiHHxl-gF2Hu4MJWYO3zRmztjMGZs5fLMP3-xA-uzoP222vvwrPKYNhNcHwq-69Xf_bWzeXN1cwwv0Tw_6JsIfnPQCVEIygJMDXMfR706wHX4YpbmW5uuHS1Os16v3q4_a5PwPW3Gptg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213835453</pqid></control><display><type>article</type><title>Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><source>SPORTDiscus with Full Text</source><creator>Rivest, Louis-Paul ; Baillargeon, Sophie</creator><creatorcontrib>Rivest, Louis-Paul ; Baillargeon, Sophie</creatorcontrib><description>This article revisits Chao's (1989, Biometrics 45, 427-438) lower bound estimator for the size of a closed population in a mark-recapture experiment where the capture probabilities vary between animals (model Mh). First, an extension of the lower bound to models featuring a time effect and heterogeneity in capture probabilities ($M_{th}$) is proposed. The biases of these lower bounds are shown to be a function of the heterogeneity parameter for several loglinear models for$M_{th}$. Small-sample bias reduction techniques for Chao's lower bound estimator are also derived. The application of the loglinear model underlying Chao's estimator when heterogeneity has been detected in the primary periods of a robust design is then investi- gated. A test for the null hypothesis that Chao's loglinear model provides unbiased abundance estimators is provided. The strategy of systematically using Chao's loglinear model in the primary periods of a robust design where heterogeneity has been detected is investigated in a Monte Carlo experiment. Its impact on the estimation of the population sizes and of the survival rates is evaluated in a Monte Carlo experiment. /// Cet article$r\acute{e}\acute{e}tudie$l'estimateur de la limite$inf\acute{e}rieure$de Chao (1989) pour l'effectif d'une population$ferm\acute{e}e$, pour des données de marquage-recapture avec$h\acute{e}t\acute{e}rog\acute{e}ndit\acute{e}$des$probabilit\acute{e}s$de capture entre individus ($mod\grave{e}le$Mh). Dans un premier temps, nous proposons une$g\acute{e}n\acute{e}ralisation}$de la limite$inf\acute{e}rieure$aux$mod\acute{e}les$comprenant à la fois un effet du temps et de$l'h\acute{e}t\acute{e}rog\acute{e}neit\acute{e}$de capture ($M_{th}$). Nous montrons que les biais de ce type d'estimateurs$d\acute{e}pendent$du$parametr\grave{e}$
$d'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$, pour plusieurs$modul\grave{e}s$log-$lin\acute{e}aires$de forme$M_{th}$. Nous proposons des techniques de$r\acute{e}duction$du biais pour petits échantillons, pour l'estimateur de la limite$infir\acute{e}eure$de Chao. Nous$\acute{e}tudions$ensuite l'application du$mod\grave{e}le$
$log-lin\acute{e}aire$de Chao, dans le cas d'un plan$d'exp\acute{e}rience$robuste où une$h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture dans les$p\acute{e}riodes$principales a$\acute{e}t\acute{e}$
$d\acute{e}tect\acute{e}e$. Nous proposons un test de l'hypothèse nulle que le$mod\grave{e}le$
$log-lin\acute{e}aire$de Chao fournit des estimateurs sans biais de l'abondance. Nous$\acute{e}valuons$par des simulations de type Monte Carlo la$strat\acute{e}gie$consistant à utiliser$syst\acute{e}matiquement$le$mod\grave{e}le$
$log-lin\acute{e}aire$de Chao entre$p\acute{e}riodes$primaires, dans un plan$d'exp\acute{e}rience$robuste où de$l'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture a$\acute{e}t\acute{e}$
$d\acute{e}tect\acute{e}e$. De la même$mani\grave{e}re$, nous$\acute{e}valuons$l'impact de cette$strat\acute{e}gie$sur l'estimation des effectifs de populations et des$probabilit\acute{e}s$de survie.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2007.00779.x</identifier><identifier>PMID: 17425635</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Algorithms ; Animal Identification Systems - methods ; Animal populations ; Animals ; Biometrics ; Biometry - methods ; Chaos theory ; Computer Simulation ; Data Interpretation, Statistical ; Estimation bias ; Estimation methods ; Estimators ; Log-convexity ; Loglinear models ; Mathematical independent variables ; Measurement techniques ; Mixture models ; Modeling ; Models, Biological ; Models, Statistical ; Monte Carlo simulation ; Multinomial distribution ; Parametric models ; Poisson regression ; Population Density ; Population Dynamics ; Population estimates ; Population size ; Research methodology ; Robust design ; Sample Size</subject><ispartof>Biometrics, 2007-12, Vol.63 (4), p.999-1006</ispartof><rights>Copyright 2007 The International Biometric Society</rights><rights>2007, The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3</citedby><cites>FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4541452$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4541452$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17425635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rivest, Louis-Paul</creatorcontrib><creatorcontrib>Baillargeon, Sophie</creatorcontrib><title>Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>This article revisits Chao's (1989, Biometrics 45, 427-438) lower bound estimator for the size of a closed population in a mark-recapture experiment where the capture probabilities vary between animals (model Mh). First, an extension of the lower bound to models featuring a time effect and heterogeneity in capture probabilities ($M_{th}$) is proposed. The biases of these lower bounds are shown to be a function of the heterogeneity parameter for several loglinear models for$M_{th}$. Small-sample bias reduction techniques for Chao's lower bound estimator are also derived. The application of the loglinear model underlying Chao's estimator when heterogeneity has been detected in the primary periods of a robust design is then investi- gated. A test for the null hypothesis that Chao's loglinear model provides unbiased abundance estimators is provided. The strategy of systematically using Chao's loglinear model in the primary periods of a robust design where heterogeneity has been detected is investigated in a Monte Carlo experiment. Its impact on the estimation of the population sizes and of the survival rates is evaluated in a Monte Carlo experiment. /// Cet article$r\acute{e}\acute{e}tudie$l'estimateur de la limite$inf\acute{e}rieure$de Chao (1989) pour l'effectif d'une population$ferm\acute{e}e$, pour des données de marquage-recapture avec$h\acute{e}t\acute{e}rog\acute{e}ndit\acute{e}$des$probabilit\acute{e}s$de capture entre individus ($mod\grave{e}le$Mh). Dans un premier temps, nous proposons une$g\acute{e}n\acute{e}ralisation}$de la limite$inf\acute{e}rieure$aux$mod\acute{e}les$comprenant à la fois un effet du temps et de$l'h\acute{e}t\acute{e}rog\acute{e}neit\acute{e}$de capture ($M_{th}$). Nous montrons que les biais de ce type d'estimateurs$d\acute{e}pendent$du$parametr\grave{e}$
$d'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$, pour plusieurs$modul\grave{e}s$log-$lin\acute{e}aires$de forme$M_{th}$. Nous proposons des techniques de$r\acute{e}duction$du biais pour petits échantillons, pour l'estimateur de la limite$infir\acute{e}eure$de Chao. Nous$\acute{e}tudions$ensuite l'application du$mod\grave{e}le$
$log-lin\acute{e}aire$de Chao, dans le cas d'un plan$d'exp\acute{e}rience$robuste où une$h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture dans les$p\acute{e}riodes$principales a$\acute{e}t\acute{e}$
$d\acute{e}tect\acute{e}e$. Nous proposons un test de l'hypothèse nulle que le$mod\grave{e}le$
$log-lin\acute{e}aire$de Chao fournit des estimateurs sans biais de l'abondance. Nous$\acute{e}valuons$par des simulations de type Monte Carlo la$strat\acute{e}gie$consistant à utiliser$syst\acute{e}matiquement$le$mod\grave{e}le$
$log-lin\acute{e}aire$de Chao entre$p\acute{e}riodes$primaires, dans un plan$d'exp\acute{e}rience$robuste où de$l'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture a$\acute{e}t\acute{e}$
$d\acute{e}tect\acute{e}e$. De la même$mani\grave{e}re$, nous$\acute{e}valuons$l'impact de cette$strat\acute{e}gie$sur l'estimation des effectifs de populations et des$probabilit\acute{e}s$de survie.</description><subject>Algorithms</subject><subject>Animal Identification Systems - methods</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Chaos theory</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Log-convexity</subject><subject>Loglinear models</subject><subject>Mathematical independent variables</subject><subject>Measurement techniques</subject><subject>Mixture models</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Monte Carlo simulation</subject><subject>Multinomial distribution</subject><subject>Parametric models</subject><subject>Poisson regression</subject><subject>Population Density</subject><subject>Population Dynamics</subject><subject>Population estimates</subject><subject>Population size</subject><subject>Research methodology</subject><subject>Robust design</subject><subject>Sample Size</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNUUuP0zAQthCILQv_ACGLA5wS_HZy4LBEZVnUZSseAnGxXMfRJqRxiBPR5dczaasiccLSyB59D818RghTklI4r5qUSkETIhhJGSE6hdJ5uruHFifgPloQQlTCBf12hh7F2ECbS8IeojOqBZOKywX6ftH3be3sWIcuYtuVeLkbfRf3bahwcWvDy4ivw9Z3I17Gsd7aMQy4ghpvPf5U__Yzz-KiDdGXeB36qd3bPUYPKttG_-R4n6Mvb5efi3fJ6ubyqrhYJU5Inie5llRJWvKSC6WdsF5VxFWSbJSmXFjGbEap18RlG-oyApzKVplzsAzLmeXn6MXBtx_Cz8nH0Wzr6Hzb2s6HKRqVEyWYokB8_g-xCdPQwWyGUZ5xCfMAKTuQ3BBiHHxl-gF2Hu4MJWYO3zRmztjMGZs5fLMP3-xA-uzoP222vvwrPKYNhNcHwq-69Xf_bWzeXN1cwwv0Tw_6JsIfnPQCVEIygJMDXMfR706wHX4YpbmW5uuHS1Os16v3q4_a5PwPW3Gptg</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Rivest, Louis-Paul</creator><creator>Baillargeon, Sophie</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200712</creationdate><title>Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population</title><author>Rivest, Louis-Paul ; Baillargeon, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Animal Identification Systems - methods</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Chaos theory</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Log-convexity</topic><topic>Loglinear models</topic><topic>Mathematical independent variables</topic><topic>Measurement techniques</topic><topic>Mixture models</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Monte Carlo simulation</topic><topic>Multinomial distribution</topic><topic>Parametric models</topic><topic>Poisson regression</topic><topic>Population Density</topic><topic>Population Dynamics</topic><topic>Population estimates</topic><topic>Population size</topic><topic>Research methodology</topic><topic>Robust design</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivest, Louis-Paul</creatorcontrib><creatorcontrib>Baillargeon, Sophie</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivest, Louis-Paul</au><au>Baillargeon, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2007-12</date><risdate>2007</risdate><volume>63</volume><issue>4</issue><spage>999</spage><epage>1006</epage><pages>999-1006</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>This article revisits Chao's (1989, Biometrics 45, 427-438) lower bound estimator for the size of a closed population in a mark-recapture experiment where the capture probabilities vary between animals (model Mh). First, an extension of the lower bound to models featuring a time effect and heterogeneity in capture probabilities ($M_{th}$) is proposed. The biases of these lower bounds are shown to be a function of the heterogeneity parameter for several loglinear models for$M_{th}$. Small-sample bias reduction techniques for Chao's lower bound estimator are also derived. The application of the loglinear model underlying Chao's estimator when heterogeneity has been detected in the primary periods of a robust design is then investi- gated. A test for the null hypothesis that Chao's loglinear model provides unbiased abundance estimators is provided. The strategy of systematically using Chao's loglinear model in the primary periods of a robust design where heterogeneity has been detected is investigated in a Monte Carlo experiment. Its impact on the estimation of the population sizes and of the survival rates is evaluated in a Monte Carlo experiment. /// Cet article$r\acute{e}\acute{e}tudie$l'estimateur de la limite$inf\acute{e}rieure$de Chao (1989) pour l'effectif d'une population$ferm\acute{e}e$, pour des données de marquage-recapture avec$h\acute{e}t\acute{e}rog\acute{e}ndit\acute{e}$des$probabilit\acute{e}s$de capture entre individus ($mod\grave{e}le$Mh). Dans un premier temps, nous proposons une$g\acute{e}n\acute{e}ralisation}$de la limite$inf\acute{e}rieure$aux$mod\acute{e}les$comprenant à la fois un effet du temps et de$l'h\acute{e}t\acute{e}rog\acute{e}neit\acute{e}$de capture ($M_{th}$). Nous montrons que les biais de ce type d'estimateurs$d\acute{e}pendent$du$parametr\grave{e}$
$d'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$, pour plusieurs$modul\grave{e}s$log-$lin\acute{e}aires$de forme$M_{th}$. Nous proposons des techniques de$r\acute{e}duction$du biais pour petits échantillons, pour l'estimateur de la limite$infir\acute{e}eure$de Chao. Nous$\acute{e}tudions$ensuite l'application du$mod\grave{e}le$
$log-lin\acute{e}aire$de Chao, dans le cas d'un plan$d'exp\acute{e}rience$robuste où une$h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture dans les$p\acute{e}riodes$principales a$\acute{e}t\acute{e}$
$d\acute{e}tect\acute{e}e$. Nous proposons un test de l'hypothèse nulle que le$mod\grave{e}le$
$log-lin\acute{e}aire$de Chao fournit des estimateurs sans biais de l'abondance. Nous$\acute{e}valuons$par des simulations de type Monte Carlo la$strat\acute{e}gie$consistant à utiliser$syst\acute{e}matiquement$le$mod\grave{e}le$
$log-lin\acute{e}aire$de Chao entre$p\acute{e}riodes$primaires, dans un plan$d'exp\acute{e}rience$robuste où de$l'h\acute{e}t\acute{e}rog\acute{e}n\acute{e}it\acute{e}$de capture a$\acute{e}t\acute{e}$
$d\acute{e}tect\acute{e}e$. De la même$mani\grave{e}re$, nous$\acute{e}valuons$l'impact de cette$strat\acute{e}gie$sur l'estimation des effectifs de populations et des$probabilit\acute{e}s$de survie.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>17425635</pmid><doi>10.1111/j.1541-0420.2007.00779.x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2007-12, Vol.63 (4), p.999-1006 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_69064261 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online; SPORTDiscus with Full Text |
subjects | Algorithms Animal Identification Systems - methods Animal populations Animals Biometrics Biometry - methods Chaos theory Computer Simulation Data Interpretation, Statistical Estimation bias Estimation methods Estimators Log-convexity Loglinear models Mathematical independent variables Measurement techniques Mixture models Modeling Models, Biological Models, Statistical Monte Carlo simulation Multinomial distribution Parametric models Poisson regression Population Density Population Dynamics Population estimates Population size Research methodology Robust design Sample Size |
title | Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20and%20Extensions%20of%20Chao's%20Moment%20Estimator%20for%20the%20Size%20of%20a%20Closed%20Population&rft.jtitle=Biometrics&rft.au=Rivest,%20Louis-Paul&rft.date=2007-12&rft.volume=63&rft.issue=4&rft.spage=999&rft.epage=1006&rft.pages=999-1006&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2007.00779.x&rft_dat=%3Cjstor_proqu%3E4541452%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4539-9751651d3d3467c4ae6f0cf50b67134a22a811e70c8b1c8067cfaf8cc095292a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213835453&rft_id=info:pmid/17425635&rft_jstor_id=4541452&rfr_iscdi=true |