Loading…

Doubly Robust Estimation in Missing Data and Causal Inference Models

The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribut...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 2005-12, Vol.61 (4), p.962-973
Main Authors: Bang, Heejung, Robins, James M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893
cites cdi_FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893
container_end_page 973
container_issue 4
container_start_page 962
container_title Biometrics
container_volume 61
creator Bang, Heejung
Robins, James M.
description The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood‐based or (nonaugmented) inverse probability‐weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.
doi_str_mv 10.1111/j.1541-0420.2005.00377.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69065082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695907</jstor_id><sourcerecordid>3695907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893</originalsourceid><addsrcrecordid>eNqNkEtv1DAUhS0EotPCP0AQsWCXcP2MvWBBZ9oyUqcVjwp2lpM4VUImLnaizvx7HDIaJFZ4c22d7xz5HoQSDBmO532bYc5wCoxARgB4BkDzPNs9QYuj8BQtAECklOEfJ-g0hDY-FQfyHJ1gwQAToRZotXJj0e2TL64Yw5BchKHZmqFxfdL0yaYJoenvk5UZTGL6KlmaMZguWfe19bYvbbJxle3CC_SsNl2wLw_zDN1dXnxbfkqvb6_Wy4_XackZzVNFpChwxUQlC2YZExzqqjKlpbhU3DDGrVWScZGzHAPhQhqJgalSKEKYVPQMvZtzH7z7Ndow6G0TStt1prduDFooiJmSRPDtP2DrRt_Hv2mCqaRMAI6QnKHSuxC8rfWDj8v7vcagp5p1q6c29dSmnmrWf2rWu2h9fcgfi62t_hoPvUbgwww8Np3d_3ewPl_fbuIt-l_N_jYMzh_9VCiuYJLTWW7CYHdH2fifWuQ05_r7zZW-lBTO6eqzvon8m5mvjdPm3jdB330lgDkAZpJRQX8DJUmpbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213834601</pqid></control><display><type>article</type><title>Doubly Robust Estimation in Missing Data and Causal Inference Models</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><source>SPORTDiscus with Full Text</source><creator>Bang, Heejung ; Robins, James M.</creator><creatorcontrib>Bang, Heejung ; Robins, James M.</creatorcontrib><description>The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood‐based or (nonaugmented) inverse probability‐weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2005.00377.x</identifier><identifier>PMID: 16401269</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K: Blackwell Publishing</publisher><subject>Antidepressive Agents - therapeutic use ; biometry ; Causal inference ; clinical trials ; Cognitive Therapy - standards ; Computer Simulation ; Data Interpretation, Statistical ; Depression - complications ; Depression - drug therapy ; Doubly robust estimation ; Estimating techniques ; Humans ; Longitudinal data ; Longitudinal Studies ; Marginal structural model ; Medical research ; Missing data ; Models, Statistical ; Multicenter Studies as Topic ; Myocardial Infarction - complications ; Semiparametrics ; Statistical methods</subject><ispartof>Biometrics, 2005-12, Vol.61 (4), p.962-973</ispartof><rights>Copyright 2005 The International Biometric Society</rights><rights>The International Biometric Society, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893</citedby><cites>FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695907$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695907$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16401269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bang, Heejung</creatorcontrib><creatorcontrib>Robins, James M.</creatorcontrib><title>Doubly Robust Estimation in Missing Data and Causal Inference Models</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood‐based or (nonaugmented) inverse probability‐weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.</description><subject>Antidepressive Agents - therapeutic use</subject><subject>biometry</subject><subject>Causal inference</subject><subject>clinical trials</subject><subject>Cognitive Therapy - standards</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Depression - complications</subject><subject>Depression - drug therapy</subject><subject>Doubly robust estimation</subject><subject>Estimating techniques</subject><subject>Humans</subject><subject>Longitudinal data</subject><subject>Longitudinal Studies</subject><subject>Marginal structural model</subject><subject>Medical research</subject><subject>Missing data</subject><subject>Models, Statistical</subject><subject>Multicenter Studies as Topic</subject><subject>Myocardial Infarction - complications</subject><subject>Semiparametrics</subject><subject>Statistical methods</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkEtv1DAUhS0EotPCP0AQsWCXcP2MvWBBZ9oyUqcVjwp2lpM4VUImLnaizvx7HDIaJFZ4c22d7xz5HoQSDBmO532bYc5wCoxARgB4BkDzPNs9QYuj8BQtAECklOEfJ-g0hDY-FQfyHJ1gwQAToRZotXJj0e2TL64Yw5BchKHZmqFxfdL0yaYJoenvk5UZTGL6KlmaMZguWfe19bYvbbJxle3CC_SsNl2wLw_zDN1dXnxbfkqvb6_Wy4_XackZzVNFpChwxUQlC2YZExzqqjKlpbhU3DDGrVWScZGzHAPhQhqJgalSKEKYVPQMvZtzH7z7Ndow6G0TStt1prduDFooiJmSRPDtP2DrRt_Hv2mCqaRMAI6QnKHSuxC8rfWDj8v7vcagp5p1q6c29dSmnmrWf2rWu2h9fcgfi62t_hoPvUbgwww8Np3d_3ewPl_fbuIt-l_N_jYMzh_9VCiuYJLTWW7CYHdH2fifWuQ05_r7zZW-lBTO6eqzvon8m5mvjdPm3jdB330lgDkAZpJRQX8DJUmpbg</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Bang, Heejung</creator><creator>Robins, James M.</creator><general>Blackwell Publishing</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200512</creationdate><title>Doubly Robust Estimation in Missing Data and Causal Inference Models</title><author>Bang, Heejung ; Robins, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Antidepressive Agents - therapeutic use</topic><topic>biometry</topic><topic>Causal inference</topic><topic>clinical trials</topic><topic>Cognitive Therapy - standards</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Depression - complications</topic><topic>Depression - drug therapy</topic><topic>Doubly robust estimation</topic><topic>Estimating techniques</topic><topic>Humans</topic><topic>Longitudinal data</topic><topic>Longitudinal Studies</topic><topic>Marginal structural model</topic><topic>Medical research</topic><topic>Missing data</topic><topic>Models, Statistical</topic><topic>Multicenter Studies as Topic</topic><topic>Myocardial Infarction - complications</topic><topic>Semiparametrics</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bang, Heejung</creatorcontrib><creatorcontrib>Robins, James M.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bang, Heejung</au><au>Robins, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doubly Robust Estimation in Missing Data and Causal Inference Models</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2005-12</date><risdate>2005</risdate><volume>61</volume><issue>4</issue><spage>962</spage><epage>973</epage><pages>962-973</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood‐based or (nonaugmented) inverse probability‐weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.</abstract><cop>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K</cop><pub>Blackwell Publishing</pub><pmid>16401269</pmid><doi>10.1111/j.1541-0420.2005.00377.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2005-12, Vol.61 (4), p.962-973
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_69065082
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online; SPORTDiscus with Full Text
subjects Antidepressive Agents - therapeutic use
biometry
Causal inference
clinical trials
Cognitive Therapy - standards
Computer Simulation
Data Interpretation, Statistical
Depression - complications
Depression - drug therapy
Doubly robust estimation
Estimating techniques
Humans
Longitudinal data
Longitudinal Studies
Marginal structural model
Medical research
Missing data
Models, Statistical
Multicenter Studies as Topic
Myocardial Infarction - complications
Semiparametrics
Statistical methods
title Doubly Robust Estimation in Missing Data and Causal Inference Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doubly%20Robust%20Estimation%20in%20Missing%20Data%20and%20Causal%20Inference%20Models&rft.jtitle=Biometrics&rft.au=Bang,%20Heejung&rft.date=2005-12&rft.volume=61&rft.issue=4&rft.spage=962&rft.epage=973&rft.pages=962-973&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2005.00377.x&rft_dat=%3Cjstor_proqu%3E3695907%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213834601&rft_id=info:pmid/16401269&rft_jstor_id=3695907&rfr_iscdi=true