Loading…
Doubly Robust Estimation in Missing Data and Causal Inference Models
The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribut...
Saved in:
Published in: | Biometrics 2005-12, Vol.61 (4), p.962-973 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893 |
---|---|
cites | cdi_FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893 |
container_end_page | 973 |
container_issue | 4 |
container_start_page | 962 |
container_title | Biometrics |
container_volume | 61 |
creator | Bang, Heejung Robins, James M. |
description | The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood‐based or (nonaugmented) inverse probability‐weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial. |
doi_str_mv | 10.1111/j.1541-0420.2005.00377.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69065082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695907</jstor_id><sourcerecordid>3695907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893</originalsourceid><addsrcrecordid>eNqNkEtv1DAUhS0EotPCP0AQsWCXcP2MvWBBZ9oyUqcVjwp2lpM4VUImLnaizvx7HDIaJFZ4c22d7xz5HoQSDBmO532bYc5wCoxARgB4BkDzPNs9QYuj8BQtAECklOEfJ-g0hDY-FQfyHJ1gwQAToRZotXJj0e2TL64Yw5BchKHZmqFxfdL0yaYJoenvk5UZTGL6KlmaMZguWfe19bYvbbJxle3CC_SsNl2wLw_zDN1dXnxbfkqvb6_Wy4_XackZzVNFpChwxUQlC2YZExzqqjKlpbhU3DDGrVWScZGzHAPhQhqJgalSKEKYVPQMvZtzH7z7Ndow6G0TStt1prduDFooiJmSRPDtP2DrRt_Hv2mCqaRMAI6QnKHSuxC8rfWDj8v7vcagp5p1q6c29dSmnmrWf2rWu2h9fcgfi62t_hoPvUbgwww8Np3d_3ewPl_fbuIt-l_N_jYMzh_9VCiuYJLTWW7CYHdH2fifWuQ05_r7zZW-lBTO6eqzvon8m5mvjdPm3jdB330lgDkAZpJRQX8DJUmpbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213834601</pqid></control><display><type>article</type><title>Doubly Robust Estimation in Missing Data and Causal Inference Models</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><source>SPORTDiscus with Full Text</source><creator>Bang, Heejung ; Robins, James M.</creator><creatorcontrib>Bang, Heejung ; Robins, James M.</creatorcontrib><description>The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood‐based or (nonaugmented) inverse probability‐weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2005.00377.x</identifier><identifier>PMID: 16401269</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K: Blackwell Publishing</publisher><subject>Antidepressive Agents - therapeutic use ; biometry ; Causal inference ; clinical trials ; Cognitive Therapy - standards ; Computer Simulation ; Data Interpretation, Statistical ; Depression - complications ; Depression - drug therapy ; Doubly robust estimation ; Estimating techniques ; Humans ; Longitudinal data ; Longitudinal Studies ; Marginal structural model ; Medical research ; Missing data ; Models, Statistical ; Multicenter Studies as Topic ; Myocardial Infarction - complications ; Semiparametrics ; Statistical methods</subject><ispartof>Biometrics, 2005-12, Vol.61 (4), p.962-973</ispartof><rights>Copyright 2005 The International Biometric Society</rights><rights>The International Biometric Society, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893</citedby><cites>FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695907$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695907$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16401269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bang, Heejung</creatorcontrib><creatorcontrib>Robins, James M.</creatorcontrib><title>Doubly Robust Estimation in Missing Data and Causal Inference Models</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood‐based or (nonaugmented) inverse probability‐weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.</description><subject>Antidepressive Agents - therapeutic use</subject><subject>biometry</subject><subject>Causal inference</subject><subject>clinical trials</subject><subject>Cognitive Therapy - standards</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Depression - complications</subject><subject>Depression - drug therapy</subject><subject>Doubly robust estimation</subject><subject>Estimating techniques</subject><subject>Humans</subject><subject>Longitudinal data</subject><subject>Longitudinal Studies</subject><subject>Marginal structural model</subject><subject>Medical research</subject><subject>Missing data</subject><subject>Models, Statistical</subject><subject>Multicenter Studies as Topic</subject><subject>Myocardial Infarction - complications</subject><subject>Semiparametrics</subject><subject>Statistical methods</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkEtv1DAUhS0EotPCP0AQsWCXcP2MvWBBZ9oyUqcVjwp2lpM4VUImLnaizvx7HDIaJFZ4c22d7xz5HoQSDBmO532bYc5wCoxARgB4BkDzPNs9QYuj8BQtAECklOEfJ-g0hDY-FQfyHJ1gwQAToRZotXJj0e2TL64Yw5BchKHZmqFxfdL0yaYJoenvk5UZTGL6KlmaMZguWfe19bYvbbJxle3CC_SsNl2wLw_zDN1dXnxbfkqvb6_Wy4_XackZzVNFpChwxUQlC2YZExzqqjKlpbhU3DDGrVWScZGzHAPhQhqJgalSKEKYVPQMvZtzH7z7Ndow6G0TStt1prduDFooiJmSRPDtP2DrRt_Hv2mCqaRMAI6QnKHSuxC8rfWDj8v7vcagp5p1q6c29dSmnmrWf2rWu2h9fcgfi62t_hoPvUbgwww8Np3d_3ewPl_fbuIt-l_N_jYMzh_9VCiuYJLTWW7CYHdH2fifWuQ05_r7zZW-lBTO6eqzvon8m5mvjdPm3jdB330lgDkAZpJRQX8DJUmpbg</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Bang, Heejung</creator><creator>Robins, James M.</creator><general>Blackwell Publishing</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200512</creationdate><title>Doubly Robust Estimation in Missing Data and Causal Inference Models</title><author>Bang, Heejung ; Robins, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Antidepressive Agents - therapeutic use</topic><topic>biometry</topic><topic>Causal inference</topic><topic>clinical trials</topic><topic>Cognitive Therapy - standards</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Depression - complications</topic><topic>Depression - drug therapy</topic><topic>Doubly robust estimation</topic><topic>Estimating techniques</topic><topic>Humans</topic><topic>Longitudinal data</topic><topic>Longitudinal Studies</topic><topic>Marginal structural model</topic><topic>Medical research</topic><topic>Missing data</topic><topic>Models, Statistical</topic><topic>Multicenter Studies as Topic</topic><topic>Myocardial Infarction - complications</topic><topic>Semiparametrics</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bang, Heejung</creatorcontrib><creatorcontrib>Robins, James M.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bang, Heejung</au><au>Robins, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doubly Robust Estimation in Missing Data and Causal Inference Models</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2005-12</date><risdate>2005</risdate><volume>61</volume><issue>4</issue><spage>962</spage><epage>973</epage><pages>962-973</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood‐based or (nonaugmented) inverse probability‐weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.</abstract><cop>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K</cop><pub>Blackwell Publishing</pub><pmid>16401269</pmid><doi>10.1111/j.1541-0420.2005.00377.x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2005-12, Vol.61 (4), p.962-973 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_69065082 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online; SPORTDiscus with Full Text |
subjects | Antidepressive Agents - therapeutic use biometry Causal inference clinical trials Cognitive Therapy - standards Computer Simulation Data Interpretation, Statistical Depression - complications Depression - drug therapy Doubly robust estimation Estimating techniques Humans Longitudinal data Longitudinal Studies Marginal structural model Medical research Missing data Models, Statistical Multicenter Studies as Topic Myocardial Infarction - complications Semiparametrics Statistical methods |
title | Doubly Robust Estimation in Missing Data and Causal Inference Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doubly%20Robust%20Estimation%20in%20Missing%20Data%20and%20Causal%20Inference%20Models&rft.jtitle=Biometrics&rft.au=Bang,%20Heejung&rft.date=2005-12&rft.volume=61&rft.issue=4&rft.spage=962&rft.epage=973&rft.pages=962-973&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2005.00377.x&rft_dat=%3Cjstor_proqu%3E3695907%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5437-9286b1d46d8b4e44650fddace31c95a445ee98456747102568a81049c69224893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213834601&rft_id=info:pmid/16401269&rft_jstor_id=3695907&rfr_iscdi=true |