Loading…

Thiamine biosynthesis in algae is regulated by riboswitches

In bacteria, many genes involved in the biosynthesis of cofactors such as thiamine pyrophosphate (TPP) are regulated by ribo switches, regions in the 5' end of mRNAs to which the cofactor binds, thereby affecting translation and/or transcription. TPP riboswitches have now been identified in fun...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2007-12, Vol.104 (52), p.20770-20775
Main Authors: Croft, Martin T, Moulin, Michael, Webb, Michael E, Smith, Alison G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c620t-5b7a0c83dc1a2d8a8f9882b48e15ed3fdc44c5e6c414dc0c83cc5c132e7fcb7f3
cites cdi_FETCH-LOGICAL-c620t-5b7a0c83dc1a2d8a8f9882b48e15ed3fdc44c5e6c414dc0c83cc5c132e7fcb7f3
container_end_page 20775
container_issue 52
container_start_page 20770
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Croft, Martin T
Moulin, Michael
Webb, Michael E
Smith, Alison G
description In bacteria, many genes involved in the biosynthesis of cofactors such as thiamine pyrophosphate (TPP) are regulated by ribo switches, regions in the 5' end of mRNAs to which the cofactor binds, thereby affecting translation and/or transcription. TPP riboswitches have now been identified in fungi, in which they alter mRNA splicing. Here, we show that addition of thiamine to cultures of the model green alga Chlamydomonas reinhardtii alters splicing of transcripts for the THI4 and THIC genes, encoding the first enzymes of the thiazole and pyrimidine branches of thiamine biosynthesis, respectively, concomitant with an increase in intracellular thiamine and TPP levels. Comparison with Volvox carteri, a related alga, revealed highly conserved regions within introns of these genes. Inspection of the sequences identified TPP riboswitch motifs, and RNA transcribed from the regions binds TPP in vitro. The THI4 riboswitch, but not the promoter region, was found to be necessary and sufficient for thiamine to repress expression of a luciferase-encoding reporter construct in vivo. The pyr1 mutant of C. reinhardtii, which is resistant to the thiamine analogue pyrithiamine, has a mutation in the THI4 riboswitch that prevents the THI4 gene from being repressed by TPP. By the use of these ribo switches, thiamine biosynthesis in C. reinhardtii can be effectively regulated at physiological concentrations of the vitamin.
doi_str_mv 10.1073/pnas.0705786105
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69088275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25450976</jstor_id><sourcerecordid>25450976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-5b7a0c83dc1a2d8a8f9882b48e15ed3fdc44c5e6c414dc0c83cc5c132e7fcb7f3</originalsourceid><addsrcrecordid>eNqF0c1rFDEUAPAgFrtWz57UwYPQw7QvmXwiCFK0CgUPtueQyWR2s8xO1iSj7n9vhl261UtPCbzfe3kvD6FXGC4wiOZyO5p0AQKYkBwDe4IWGBSuOVXwFC0AiKglJfQUPU9pDQCKSXiGTrEE1SgmFujD7cqbjR9d1fqQdmNeueRT5cfKDEvjqnKPbjkNJruuandV9G1Iv322xb1AJ70Zknt5OM_Q3ZfPt1df65vv19-uPt3UlhPINWuFASubzmJDOmlkr6QkLZUOM9c1fWcptcxxSzHt7CytZRY3xInetqJvztDHfd3t1G5cZ92Yoxn0NvqNiTsdjNf_Rka_0svwSxOKAYQoBd4fCsTwc3Ip641P1g2DGV2YkuYKSkeCPQoJcExBQoHv_oPrMMWx_EIxuKGccVrQ5R7ZGFKKrr9vGYOe16fn9enj-krGm4eTHv1hXwVUBzBnHstRzUh5WYi5tfNHiO6nYcjuTy729d6uUw7xHhNGGSjBS_ztPt6boM0y-qTvfswDAkgKSsnmL-aHwn0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201346564</pqid></control><display><type>article</type><title>Thiamine biosynthesis in algae is regulated by riboswitches</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Croft, Martin T ; Moulin, Michael ; Webb, Michael E ; Smith, Alison G</creator><creatorcontrib>Croft, Martin T ; Moulin, Michael ; Webb, Michael E ; Smith, Alison G</creatorcontrib><description>In bacteria, many genes involved in the biosynthesis of cofactors such as thiamine pyrophosphate (TPP) are regulated by ribo switches, regions in the 5' end of mRNAs to which the cofactor binds, thereby affecting translation and/or transcription. TPP riboswitches have now been identified in fungi, in which they alter mRNA splicing. Here, we show that addition of thiamine to cultures of the model green alga Chlamydomonas reinhardtii alters splicing of transcripts for the THI4 and THIC genes, encoding the first enzymes of the thiazole and pyrimidine branches of thiamine biosynthesis, respectively, concomitant with an increase in intracellular thiamine and TPP levels. Comparison with Volvox carteri, a related alga, revealed highly conserved regions within introns of these genes. Inspection of the sequences identified TPP riboswitch motifs, and RNA transcribed from the regions binds TPP in vitro. The THI4 riboswitch, but not the promoter region, was found to be necessary and sufficient for thiamine to repress expression of a luciferase-encoding reporter construct in vivo. The pyr1 mutant of C. reinhardtii, which is resistant to the thiamine analogue pyrithiamine, has a mutation in the THI4 riboswitch that prevents the THI4 gene from being repressed by TPP. By the use of these ribo switches, thiamine biosynthesis in C. reinhardtii can be effectively regulated at physiological concentrations of the vitamin.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0705786105</identifier><identifier>PMID: 18093957</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alternative Splicing ; Animals ; Bacteria ; Bacteriology ; Base Sequence ; Biochemistry - methods ; Biological Sciences ; Biosynthesis ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - metabolism ; Codon ; Enzymes ; Eukaryota - metabolism ; Eukaryota - physiology ; Exons ; Gene Expression Regulation ; Genes ; Genes, Reporter ; Introns ; Luciferases - metabolism ; Metabolism ; Models, Chemical ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Photosynthesis ; Plasmids - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonucleic acid ; RNA ; Splicing ; Thiamine - chemistry ; Thiamine - metabolism ; Untranslated regions ; Volvox carteri</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-12, Vol.104 (52), p.20770-20775</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 26, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-5b7a0c83dc1a2d8a8f9882b48e15ed3fdc44c5e6c414dc0c83cc5c132e7fcb7f3</citedby><cites>FETCH-LOGICAL-c620t-5b7a0c83dc1a2d8a8f9882b48e15ed3fdc44c5e6c414dc0c83cc5c132e7fcb7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/52.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25450976$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25450976$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18093957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Croft, Martin T</creatorcontrib><creatorcontrib>Moulin, Michael</creatorcontrib><creatorcontrib>Webb, Michael E</creatorcontrib><creatorcontrib>Smith, Alison G</creatorcontrib><title>Thiamine biosynthesis in algae is regulated by riboswitches</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In bacteria, many genes involved in the biosynthesis of cofactors such as thiamine pyrophosphate (TPP) are regulated by ribo switches, regions in the 5' end of mRNAs to which the cofactor binds, thereby affecting translation and/or transcription. TPP riboswitches have now been identified in fungi, in which they alter mRNA splicing. Here, we show that addition of thiamine to cultures of the model green alga Chlamydomonas reinhardtii alters splicing of transcripts for the THI4 and THIC genes, encoding the first enzymes of the thiazole and pyrimidine branches of thiamine biosynthesis, respectively, concomitant with an increase in intracellular thiamine and TPP levels. Comparison with Volvox carteri, a related alga, revealed highly conserved regions within introns of these genes. Inspection of the sequences identified TPP riboswitch motifs, and RNA transcribed from the regions binds TPP in vitro. The THI4 riboswitch, but not the promoter region, was found to be necessary and sufficient for thiamine to repress expression of a luciferase-encoding reporter construct in vivo. The pyr1 mutant of C. reinhardtii, which is resistant to the thiamine analogue pyrithiamine, has a mutation in the THI4 riboswitch that prevents the THI4 gene from being repressed by TPP. By the use of these ribo switches, thiamine biosynthesis in C. reinhardtii can be effectively regulated at physiological concentrations of the vitamin.</description><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Base Sequence</subject><subject>Biochemistry - methods</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Codon</subject><subject>Enzymes</subject><subject>Eukaryota - metabolism</subject><subject>Eukaryota - physiology</subject><subject>Exons</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genes, Reporter</subject><subject>Introns</subject><subject>Luciferases - metabolism</subject><subject>Metabolism</subject><subject>Models, Chemical</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Photosynthesis</subject><subject>Plasmids - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Splicing</subject><subject>Thiamine - chemistry</subject><subject>Thiamine - metabolism</subject><subject>Untranslated regions</subject><subject>Volvox carteri</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0c1rFDEUAPAgFrtWz57UwYPQw7QvmXwiCFK0CgUPtueQyWR2s8xO1iSj7n9vhl261UtPCbzfe3kvD6FXGC4wiOZyO5p0AQKYkBwDe4IWGBSuOVXwFC0AiKglJfQUPU9pDQCKSXiGTrEE1SgmFujD7cqbjR9d1fqQdmNeueRT5cfKDEvjqnKPbjkNJruuandV9G1Iv322xb1AJ70Zknt5OM_Q3ZfPt1df65vv19-uPt3UlhPINWuFASubzmJDOmlkr6QkLZUOM9c1fWcptcxxSzHt7CytZRY3xInetqJvztDHfd3t1G5cZ92Yoxn0NvqNiTsdjNf_Rka_0svwSxOKAYQoBd4fCsTwc3Ip641P1g2DGV2YkuYKSkeCPQoJcExBQoHv_oPrMMWx_EIxuKGccVrQ5R7ZGFKKrr9vGYOe16fn9enj-krGm4eTHv1hXwVUBzBnHstRzUh5WYi5tfNHiO6nYcjuTy729d6uUw7xHhNGGSjBS_ztPt6boM0y-qTvfswDAkgKSsnmL-aHwn0</recordid><startdate>20071226</startdate><enddate>20071226</enddate><creator>Croft, Martin T</creator><creator>Moulin, Michael</creator><creator>Webb, Michael E</creator><creator>Smith, Alison G</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071226</creationdate><title>Thiamine biosynthesis in algae is regulated by riboswitches</title><author>Croft, Martin T ; Moulin, Michael ; Webb, Michael E ; Smith, Alison G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-5b7a0c83dc1a2d8a8f9882b48e15ed3fdc44c5e6c414dc0c83cc5c132e7fcb7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Base Sequence</topic><topic>Biochemistry - methods</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Codon</topic><topic>Enzymes</topic><topic>Eukaryota - metabolism</topic><topic>Eukaryota - physiology</topic><topic>Exons</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genes, Reporter</topic><topic>Introns</topic><topic>Luciferases - metabolism</topic><topic>Metabolism</topic><topic>Models, Chemical</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Photosynthesis</topic><topic>Plasmids - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Splicing</topic><topic>Thiamine - chemistry</topic><topic>Thiamine - metabolism</topic><topic>Untranslated regions</topic><topic>Volvox carteri</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Croft, Martin T</creatorcontrib><creatorcontrib>Moulin, Michael</creatorcontrib><creatorcontrib>Webb, Michael E</creatorcontrib><creatorcontrib>Smith, Alison G</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Croft, Martin T</au><au>Moulin, Michael</au><au>Webb, Michael E</au><au>Smith, Alison G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thiamine biosynthesis in algae is regulated by riboswitches</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-12-26</date><risdate>2007</risdate><volume>104</volume><issue>52</issue><spage>20770</spage><epage>20775</epage><pages>20770-20775</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In bacteria, many genes involved in the biosynthesis of cofactors such as thiamine pyrophosphate (TPP) are regulated by ribo switches, regions in the 5' end of mRNAs to which the cofactor binds, thereby affecting translation and/or transcription. TPP riboswitches have now been identified in fungi, in which they alter mRNA splicing. Here, we show that addition of thiamine to cultures of the model green alga Chlamydomonas reinhardtii alters splicing of transcripts for the THI4 and THIC genes, encoding the first enzymes of the thiazole and pyrimidine branches of thiamine biosynthesis, respectively, concomitant with an increase in intracellular thiamine and TPP levels. Comparison with Volvox carteri, a related alga, revealed highly conserved regions within introns of these genes. Inspection of the sequences identified TPP riboswitch motifs, and RNA transcribed from the regions binds TPP in vitro. The THI4 riboswitch, but not the promoter region, was found to be necessary and sufficient for thiamine to repress expression of a luciferase-encoding reporter construct in vivo. The pyr1 mutant of C. reinhardtii, which is resistant to the thiamine analogue pyrithiamine, has a mutation in the THI4 riboswitch that prevents the THI4 gene from being repressed by TPP. By the use of these ribo switches, thiamine biosynthesis in C. reinhardtii can be effectively regulated at physiological concentrations of the vitamin.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18093957</pmid><doi>10.1073/pnas.0705786105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-12, Vol.104 (52), p.20770-20775
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_69088275
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Alternative Splicing
Animals
Bacteria
Bacteriology
Base Sequence
Biochemistry - methods
Biological Sciences
Biosynthesis
Chlamydomonas reinhardtii
Chlamydomonas reinhardtii - metabolism
Codon
Enzymes
Eukaryota - metabolism
Eukaryota - physiology
Exons
Gene Expression Regulation
Genes
Genes, Reporter
Introns
Luciferases - metabolism
Metabolism
Models, Chemical
Molecular Sequence Data
Mutation
Nucleic Acid Conformation
Photosynthesis
Plasmids - metabolism
Reverse Transcriptase Polymerase Chain Reaction
Ribonucleic acid
RNA
Splicing
Thiamine - chemistry
Thiamine - metabolism
Untranslated regions
Volvox carteri
title Thiamine biosynthesis in algae is regulated by riboswitches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thiamine%20biosynthesis%20in%20algae%20is%20regulated%20by%20riboswitches&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Croft,%20Martin%20T&rft.date=2007-12-26&rft.volume=104&rft.issue=52&rft.spage=20770&rft.epage=20775&rft.pages=20770-20775&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0705786105&rft_dat=%3Cjstor_proqu%3E25450976%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c620t-5b7a0c83dc1a2d8a8f9882b48e15ed3fdc44c5e6c414dc0c83cc5c132e7fcb7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201346564&rft_id=info:pmid/18093957&rft_jstor_id=25450976&rfr_iscdi=true