Loading…

Leaf scorch symptoms are not correlated with bacterial populations during Pierce's disease

Xylella fastidiosa (Xf) is a xylem-limited bacterium that lives as a harmless endophyte in most plant species but is pathogenic in several agriculturally important crops such as coffee, citrus, and grapevine (Vitis vinifera L.). In susceptible cultivars of grapevine, Xf infection results in leaf sco...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany 2007-12, Vol.58 (15-16), p.4037-4046
Main Authors: Gambetta, G.A, Fei, J, Rost, T.L, Matthews, M.A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Xylella fastidiosa (Xf) is a xylem-limited bacterium that lives as a harmless endophyte in most plant species but is pathogenic in several agriculturally important crops such as coffee, citrus, and grapevine (Vitis vinifera L.). In susceptible cultivars of grapevine, Xf infection results in leaf scorch, premature leaf senescence, and eventually vine death; a suite of symptoms collectively referred to as Pierce's disease. A qPCR assay was developed to determine bacterial concentrations in planta and these concentrations were related to the development of leaf-scorch symptoms. The concentration of Xf in leaves of experimental grapevines grown in the greenhouse was similar to the concentration of Xf in leaves of naturally infected plants in the field. The distribution of Xf was patchy within and among leaves. Some whole leaves exhibited severe leaf-scorch symptoms in the absence of high concentrations of Xf. Despite a highly sensitive assay and a range of Xf concentrations from 102 to 109 cells g−1 fresh weight, no clear relationship between bacterial population and symptom development during Pierce's disease was revealed. Thus, high and localized concentrations of Xf are not necessary for the formation of leaf-scorch symptoms. The results are interpreted as being consistent with an atiology that involves a systemic plant response.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/erm260