Loading…
Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems
Nucleic acid structure, stability, and reactivity are governed substantially by cations. We propose that magnesium and other biological inorganic ions unstack bases of DNA and RNA. This unstacking function of cations opposes their previously accepted role in stabilizing DNA and RNA duplexes and high...
Saved in:
Published in: | Biochemistry (Easton) 1998-12, Vol.37 (49), p.17105-17111 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3 |
---|---|
cites | cdi_FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3 |
container_end_page | 17111 |
container_issue | 49 |
container_start_page | 17105 |
container_title | Biochemistry (Easton) |
container_volume | 37 |
creator | McFail-Isom, Lori Shui, Xiuqi Williams, Loren Dean |
description | Nucleic acid structure, stability, and reactivity are governed substantially by cations. We propose that magnesium and other biological inorganic ions unstack bases of DNA and RNA. This unstacking function of cations opposes their previously accepted role in stabilizing DNA and RNA duplexes and higher assemblies. We show that cations interact favorably with π-systems of nucleic acid bases. These cation-π interactions require access of cations or their first hydration shells to faces of nucleic acid bases. We observe that hydrated magnesium ions located in the major groove of B-DNA pull cytosine bases partially out from the helical stack, exposing π-systems to positive charge. A series of critical cation-π interactions contribute to the stability of the anticodon arm of yeast-tRNAphe, and to the magnesium core of the Tetrahymena group I intron P4−P6 domain. The structural consequences of divalent cation-π interactions are clearly distinct from, and some cases in opposition to, cation−electron lone pair interactions. These observations of cation-π interactions suggest a number of new mechanistic roles for cations in DNA bending, DNA−protein recognition, base-flipping, RNA folding, and catalysis. |
doi_str_mv | 10.1021/bi982201+ |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69099303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69099303</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3</originalsourceid><addsrcrecordid>eNplkMtuFDEQRS0ECpPAgg9A8gIhJNTgR9vdXobJg0jhlUkkdla1uwacdLuD7UmYfA1fxDdhNEM2rK5K99Qt1SXkGWdvOBP8bedNKwTjrx-QGVeCVbUx6iGZMcZ0JYxmj8luSpdlrFlT75Ad02pWNmYED_wNDBgynUP2U0h0kaHzg79DehFSBneFPZ1PYTnFcUtMS3rwcZ9C6OlZ0W5NT0LGCC778I3e-vydvoOE9PcvulinjGN6Qh4tYUj4dKt75OLo8Hz-vjr9dHwy3z-tQDRNrmrpWO1Ei9woVNDXPZeya7nSpnVaomS9bCW6RvSS18WQoFBD32LDda1A7pGXm9zrOP1YYcp29MnhMEDAaZWsNswYyWQBX21AF6eUIi7tdfQjxLXlzP6t1P6rtKDPt5mrbsT-HtxWWPxq4_vy6s97G-KV1Y1slD3_vLBfufhw9kVJe1T4FxseXLKX0yqG0sj_Z_8AF8OKpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69099303</pqid></control><display><type>article</type><title>Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>McFail-Isom, Lori ; Shui, Xiuqi ; Williams, Loren Dean</creator><creatorcontrib>McFail-Isom, Lori ; Shui, Xiuqi ; Williams, Loren Dean</creatorcontrib><description>Nucleic acid structure, stability, and reactivity are governed substantially by cations. We propose that magnesium and other biological inorganic ions unstack bases of DNA and RNA. This unstacking function of cations opposes their previously accepted role in stabilizing DNA and RNA duplexes and higher assemblies. We show that cations interact favorably with π-systems of nucleic acid bases. These cation-π interactions require access of cations or their first hydration shells to faces of nucleic acid bases. We observe that hydrated magnesium ions located in the major groove of B-DNA pull cytosine bases partially out from the helical stack, exposing π-systems to positive charge. A series of critical cation-π interactions contribute to the stability of the anticodon arm of yeast-tRNAphe, and to the magnesium core of the Tetrahymena group I intron P4−P6 domain. The structural consequences of divalent cation-π interactions are clearly distinct from, and some cases in opposition to, cation−electron lone pair interactions. These observations of cation-π interactions suggest a number of new mechanistic roles for cations in DNA bending, DNA−protein recognition, base-flipping, RNA folding, and catalysis.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi982201+</identifier><identifier>PMID: 9860822</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Base Composition ; Cations, Divalent ; DNA - chemistry ; DNA, Protozoan - chemistry ; Magnesium Hydroxide - chemistry ; Models, Molecular ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides - chemistry ; RNA, Fungal - chemistry ; RNA, Protozoan - chemistry ; RNA, Transfer, Phe - chemistry ; Tetrahymena</subject><ispartof>Biochemistry (Easton), 1998-12, Vol.37 (49), p.17105-17111</ispartof><rights>Copyright © 1998 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3</citedby><cites>FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9860822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McFail-Isom, Lori</creatorcontrib><creatorcontrib>Shui, Xiuqi</creatorcontrib><creatorcontrib>Williams, Loren Dean</creatorcontrib><title>Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Nucleic acid structure, stability, and reactivity are governed substantially by cations. We propose that magnesium and other biological inorganic ions unstack bases of DNA and RNA. This unstacking function of cations opposes their previously accepted role in stabilizing DNA and RNA duplexes and higher assemblies. We show that cations interact favorably with π-systems of nucleic acid bases. These cation-π interactions require access of cations or their first hydration shells to faces of nucleic acid bases. We observe that hydrated magnesium ions located in the major groove of B-DNA pull cytosine bases partially out from the helical stack, exposing π-systems to positive charge. A series of critical cation-π interactions contribute to the stability of the anticodon arm of yeast-tRNAphe, and to the magnesium core of the Tetrahymena group I intron P4−P6 domain. The structural consequences of divalent cation-π interactions are clearly distinct from, and some cases in opposition to, cation−electron lone pair interactions. These observations of cation-π interactions suggest a number of new mechanistic roles for cations in DNA bending, DNA−protein recognition, base-flipping, RNA folding, and catalysis.</description><subject>Animals</subject><subject>Base Composition</subject><subject>Cations, Divalent</subject><subject>DNA - chemistry</subject><subject>DNA, Protozoan - chemistry</subject><subject>Magnesium Hydroxide - chemistry</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>RNA, Fungal - chemistry</subject><subject>RNA, Protozoan - chemistry</subject><subject>RNA, Transfer, Phe - chemistry</subject><subject>Tetrahymena</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNplkMtuFDEQRS0ECpPAgg9A8gIhJNTgR9vdXobJg0jhlUkkdla1uwacdLuD7UmYfA1fxDdhNEM2rK5K99Qt1SXkGWdvOBP8bedNKwTjrx-QGVeCVbUx6iGZMcZ0JYxmj8luSpdlrFlT75Ad02pWNmYED_wNDBgynUP2U0h0kaHzg79DehFSBneFPZ1PYTnFcUtMS3rwcZ9C6OlZ0W5NT0LGCC778I3e-vydvoOE9PcvulinjGN6Qh4tYUj4dKt75OLo8Hz-vjr9dHwy3z-tQDRNrmrpWO1Ei9woVNDXPZeya7nSpnVaomS9bCW6RvSS18WQoFBD32LDda1A7pGXm9zrOP1YYcp29MnhMEDAaZWsNswYyWQBX21AF6eUIi7tdfQjxLXlzP6t1P6rtKDPt5mrbsT-HtxWWPxq4_vy6s97G-KV1Y1slD3_vLBfufhw9kVJe1T4FxseXLKX0yqG0sj_Z_8AF8OKpA</recordid><startdate>19981208</startdate><enddate>19981208</enddate><creator>McFail-Isom, Lori</creator><creator>Shui, Xiuqi</creator><creator>Williams, Loren Dean</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19981208</creationdate><title>Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems</title><author>McFail-Isom, Lori ; Shui, Xiuqi ; Williams, Loren Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Base Composition</topic><topic>Cations, Divalent</topic><topic>DNA - chemistry</topic><topic>DNA, Protozoan - chemistry</topic><topic>Magnesium Hydroxide - chemistry</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>RNA, Fungal - chemistry</topic><topic>RNA, Protozoan - chemistry</topic><topic>RNA, Transfer, Phe - chemistry</topic><topic>Tetrahymena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McFail-Isom, Lori</creatorcontrib><creatorcontrib>Shui, Xiuqi</creatorcontrib><creatorcontrib>Williams, Loren Dean</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McFail-Isom, Lori</au><au>Shui, Xiuqi</au><au>Williams, Loren Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1998-12-08</date><risdate>1998</risdate><volume>37</volume><issue>49</issue><spage>17105</spage><epage>17111</epage><pages>17105-17111</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Nucleic acid structure, stability, and reactivity are governed substantially by cations. We propose that magnesium and other biological inorganic ions unstack bases of DNA and RNA. This unstacking function of cations opposes their previously accepted role in stabilizing DNA and RNA duplexes and higher assemblies. We show that cations interact favorably with π-systems of nucleic acid bases. These cation-π interactions require access of cations or their first hydration shells to faces of nucleic acid bases. We observe that hydrated magnesium ions located in the major groove of B-DNA pull cytosine bases partially out from the helical stack, exposing π-systems to positive charge. A series of critical cation-π interactions contribute to the stability of the anticodon arm of yeast-tRNAphe, and to the magnesium core of the Tetrahymena group I intron P4−P6 domain. The structural consequences of divalent cation-π interactions are clearly distinct from, and some cases in opposition to, cation−electron lone pair interactions. These observations of cation-π interactions suggest a number of new mechanistic roles for cations in DNA bending, DNA−protein recognition, base-flipping, RNA folding, and catalysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>9860822</pmid><doi>10.1021/bi982201+</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 1998-12, Vol.37 (49), p.17105-17111 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_69099303 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Animals Base Composition Cations, Divalent DNA - chemistry DNA, Protozoan - chemistry Magnesium Hydroxide - chemistry Models, Molecular Nucleic Acid Conformation Oligodeoxyribonucleotides - chemistry RNA, Fungal - chemistry RNA, Protozoan - chemistry RNA, Transfer, Phe - chemistry Tetrahymena |
title | Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divalent%20Cations%20Stabilize%20Unstacked%20Conformations%20of%20DNA%20and%20RNA%20by%20Interacting%20with%20Base%20%CE%A0%20Systems&rft.jtitle=Biochemistry%20(Easton)&rft.au=McFail-Isom,%20Lori&rft.date=1998-12-08&rft.volume=37&rft.issue=49&rft.spage=17105&rft.epage=17111&rft.pages=17105-17111&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi982201+&rft_dat=%3Cproquest_cross%3E69099303%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69099303&rft_id=info:pmid/9860822&rfr_iscdi=true |