Loading…

Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems

Nucleic acid structure, stability, and reactivity are governed substantially by cations. We propose that magnesium and other biological inorganic ions unstack bases of DNA and RNA. This unstacking function of cations opposes their previously accepted role in stabilizing DNA and RNA duplexes and high...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1998-12, Vol.37 (49), p.17105-17111
Main Authors: McFail-Isom, Lori, Shui, Xiuqi, Williams, Loren Dean
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3
cites cdi_FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3
container_end_page 17111
container_issue 49
container_start_page 17105
container_title Biochemistry (Easton)
container_volume 37
creator McFail-Isom, Lori
Shui, Xiuqi
Williams, Loren Dean
description Nucleic acid structure, stability, and reactivity are governed substantially by cations. We propose that magnesium and other biological inorganic ions unstack bases of DNA and RNA. This unstacking function of cations opposes their previously accepted role in stabilizing DNA and RNA duplexes and higher assemblies. We show that cations interact favorably with π-systems of nucleic acid bases. These cation-π interactions require access of cations or their first hydration shells to faces of nucleic acid bases. We observe that hydrated magnesium ions located in the major groove of B-DNA pull cytosine bases partially out from the helical stack, exposing π-systems to positive charge. A series of critical cation-π interactions contribute to the stability of the anticodon arm of yeast-tRNAphe, and to the magnesium core of the Tetrahymena group I intron P4−P6 domain. The structural consequences of divalent cation-π interactions are clearly distinct from, and some cases in opposition to, cation−electron lone pair interactions. These observations of cation-π interactions suggest a number of new mechanistic roles for cations in DNA bending, DNA−protein recognition, base-flipping, RNA folding, and catalysis.
doi_str_mv 10.1021/bi982201+
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69099303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69099303</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3</originalsourceid><addsrcrecordid>eNplkMtuFDEQRS0ECpPAgg9A8gIhJNTgR9vdXobJg0jhlUkkdla1uwacdLuD7UmYfA1fxDdhNEM2rK5K99Qt1SXkGWdvOBP8bedNKwTjrx-QGVeCVbUx6iGZMcZ0JYxmj8luSpdlrFlT75Ad02pWNmYED_wNDBgynUP2U0h0kaHzg79DehFSBneFPZ1PYTnFcUtMS3rwcZ9C6OlZ0W5NT0LGCC778I3e-vydvoOE9PcvulinjGN6Qh4tYUj4dKt75OLo8Hz-vjr9dHwy3z-tQDRNrmrpWO1Ei9woVNDXPZeya7nSpnVaomS9bCW6RvSS18WQoFBD32LDda1A7pGXm9zrOP1YYcp29MnhMEDAaZWsNswYyWQBX21AF6eUIi7tdfQjxLXlzP6t1P6rtKDPt5mrbsT-HtxWWPxq4_vy6s97G-KV1Y1slD3_vLBfufhw9kVJe1T4FxseXLKX0yqG0sj_Z_8AF8OKpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69099303</pqid></control><display><type>article</type><title>Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>McFail-Isom, Lori ; Shui, Xiuqi ; Williams, Loren Dean</creator><creatorcontrib>McFail-Isom, Lori ; Shui, Xiuqi ; Williams, Loren Dean</creatorcontrib><description>Nucleic acid structure, stability, and reactivity are governed substantially by cations. We propose that magnesium and other biological inorganic ions unstack bases of DNA and RNA. This unstacking function of cations opposes their previously accepted role in stabilizing DNA and RNA duplexes and higher assemblies. We show that cations interact favorably with π-systems of nucleic acid bases. These cation-π interactions require access of cations or their first hydration shells to faces of nucleic acid bases. We observe that hydrated magnesium ions located in the major groove of B-DNA pull cytosine bases partially out from the helical stack, exposing π-systems to positive charge. A series of critical cation-π interactions contribute to the stability of the anticodon arm of yeast-tRNAphe, and to the magnesium core of the Tetrahymena group I intron P4−P6 domain. The structural consequences of divalent cation-π interactions are clearly distinct from, and some cases in opposition to, cation−electron lone pair interactions. These observations of cation-π interactions suggest a number of new mechanistic roles for cations in DNA bending, DNA−protein recognition, base-flipping, RNA folding, and catalysis.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi982201+</identifier><identifier>PMID: 9860822</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Base Composition ; Cations, Divalent ; DNA - chemistry ; DNA, Protozoan - chemistry ; Magnesium Hydroxide - chemistry ; Models, Molecular ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides - chemistry ; RNA, Fungal - chemistry ; RNA, Protozoan - chemistry ; RNA, Transfer, Phe - chemistry ; Tetrahymena</subject><ispartof>Biochemistry (Easton), 1998-12, Vol.37 (49), p.17105-17111</ispartof><rights>Copyright © 1998 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3</citedby><cites>FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9860822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McFail-Isom, Lori</creatorcontrib><creatorcontrib>Shui, Xiuqi</creatorcontrib><creatorcontrib>Williams, Loren Dean</creatorcontrib><title>Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Nucleic acid structure, stability, and reactivity are governed substantially by cations. We propose that magnesium and other biological inorganic ions unstack bases of DNA and RNA. This unstacking function of cations opposes their previously accepted role in stabilizing DNA and RNA duplexes and higher assemblies. We show that cations interact favorably with π-systems of nucleic acid bases. These cation-π interactions require access of cations or their first hydration shells to faces of nucleic acid bases. We observe that hydrated magnesium ions located in the major groove of B-DNA pull cytosine bases partially out from the helical stack, exposing π-systems to positive charge. A series of critical cation-π interactions contribute to the stability of the anticodon arm of yeast-tRNAphe, and to the magnesium core of the Tetrahymena group I intron P4−P6 domain. The structural consequences of divalent cation-π interactions are clearly distinct from, and some cases in opposition to, cation−electron lone pair interactions. These observations of cation-π interactions suggest a number of new mechanistic roles for cations in DNA bending, DNA−protein recognition, base-flipping, RNA folding, and catalysis.</description><subject>Animals</subject><subject>Base Composition</subject><subject>Cations, Divalent</subject><subject>DNA - chemistry</subject><subject>DNA, Protozoan - chemistry</subject><subject>Magnesium Hydroxide - chemistry</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>RNA, Fungal - chemistry</subject><subject>RNA, Protozoan - chemistry</subject><subject>RNA, Transfer, Phe - chemistry</subject><subject>Tetrahymena</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNplkMtuFDEQRS0ECpPAgg9A8gIhJNTgR9vdXobJg0jhlUkkdla1uwacdLuD7UmYfA1fxDdhNEM2rK5K99Qt1SXkGWdvOBP8bedNKwTjrx-QGVeCVbUx6iGZMcZ0JYxmj8luSpdlrFlT75Ad02pWNmYED_wNDBgynUP2U0h0kaHzg79DehFSBneFPZ1PYTnFcUtMS3rwcZ9C6OlZ0W5NT0LGCC778I3e-vydvoOE9PcvulinjGN6Qh4tYUj4dKt75OLo8Hz-vjr9dHwy3z-tQDRNrmrpWO1Ei9woVNDXPZeya7nSpnVaomS9bCW6RvSS18WQoFBD32LDda1A7pGXm9zrOP1YYcp29MnhMEDAaZWsNswYyWQBX21AF6eUIi7tdfQjxLXlzP6t1P6rtKDPt5mrbsT-HtxWWPxq4_vy6s97G-KV1Y1slD3_vLBfufhw9kVJe1T4FxseXLKX0yqG0sj_Z_8AF8OKpA</recordid><startdate>19981208</startdate><enddate>19981208</enddate><creator>McFail-Isom, Lori</creator><creator>Shui, Xiuqi</creator><creator>Williams, Loren Dean</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19981208</creationdate><title>Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems</title><author>McFail-Isom, Lori ; Shui, Xiuqi ; Williams, Loren Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Base Composition</topic><topic>Cations, Divalent</topic><topic>DNA - chemistry</topic><topic>DNA, Protozoan - chemistry</topic><topic>Magnesium Hydroxide - chemistry</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>RNA, Fungal - chemistry</topic><topic>RNA, Protozoan - chemistry</topic><topic>RNA, Transfer, Phe - chemistry</topic><topic>Tetrahymena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McFail-Isom, Lori</creatorcontrib><creatorcontrib>Shui, Xiuqi</creatorcontrib><creatorcontrib>Williams, Loren Dean</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McFail-Isom, Lori</au><au>Shui, Xiuqi</au><au>Williams, Loren Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1998-12-08</date><risdate>1998</risdate><volume>37</volume><issue>49</issue><spage>17105</spage><epage>17111</epage><pages>17105-17111</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Nucleic acid structure, stability, and reactivity are governed substantially by cations. We propose that magnesium and other biological inorganic ions unstack bases of DNA and RNA. This unstacking function of cations opposes their previously accepted role in stabilizing DNA and RNA duplexes and higher assemblies. We show that cations interact favorably with π-systems of nucleic acid bases. These cation-π interactions require access of cations or their first hydration shells to faces of nucleic acid bases. We observe that hydrated magnesium ions located in the major groove of B-DNA pull cytosine bases partially out from the helical stack, exposing π-systems to positive charge. A series of critical cation-π interactions contribute to the stability of the anticodon arm of yeast-tRNAphe, and to the magnesium core of the Tetrahymena group I intron P4−P6 domain. The structural consequences of divalent cation-π interactions are clearly distinct from, and some cases in opposition to, cation−electron lone pair interactions. These observations of cation-π interactions suggest a number of new mechanistic roles for cations in DNA bending, DNA−protein recognition, base-flipping, RNA folding, and catalysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>9860822</pmid><doi>10.1021/bi982201+</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 1998-12, Vol.37 (49), p.17105-17111
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_69099303
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Base Composition
Cations, Divalent
DNA - chemistry
DNA, Protozoan - chemistry
Magnesium Hydroxide - chemistry
Models, Molecular
Nucleic Acid Conformation
Oligodeoxyribonucleotides - chemistry
RNA, Fungal - chemistry
RNA, Protozoan - chemistry
RNA, Transfer, Phe - chemistry
Tetrahymena
title Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base Π Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divalent%20Cations%20Stabilize%20Unstacked%20Conformations%20of%20DNA%20and%20RNA%20by%20Interacting%20with%20Base%20%CE%A0%20Systems&rft.jtitle=Biochemistry%20(Easton)&rft.au=McFail-Isom,%20Lori&rft.date=1998-12-08&rft.volume=37&rft.issue=49&rft.spage=17105&rft.epage=17111&rft.pages=17105-17111&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi982201+&rft_dat=%3Cproquest_cross%3E69099303%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a277t-43c04c28e195e5ad4d133b815698c63e30d383ec72d314b813a5e6ad8e71645a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69099303&rft_id=info:pmid/9860822&rfr_iscdi=true