Loading…

Structure, function and regulation of the vacuolar (H +)-ATPases

The vacuolar (H +)-ATPases (or V-ATPases) function to acidify intracellular compartments in eukaryotic cells, playing an important role in such processes as receptor-mediated endocytosis, intracellular membrane traffic, protein degradation and coupled transport. V-ATPases in the plasma membrane of s...

Full description

Saved in:
Bibliographic Details
Published in:FEBS Letters 1998-12, Vol.440 (3), p.258-263
Main Author: Forgac, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vacuolar (H +)-ATPases (or V-ATPases) function to acidify intracellular compartments in eukaryotic cells, playing an important role in such processes as receptor-mediated endocytosis, intracellular membrane traffic, protein degradation and coupled transport. V-ATPases in the plasma membrane of specialized cells also function in renal acidification, bone resorption and cytosolic pH maintenance. The V-ATPases are composed of two domains. The V 1 domain is a 570-kDa peripheral complex composed of 8 subunits (subunits A–H) of molecular weight 70–13 kDa which is responsible for ATP hydrolysis. The V 0 domain is a 260-kDa integral complex composed of 5 subunits (subunits a–d) which is responsible for proton translocation. The V-ATPases are structurally related to the F-ATPases which function in ATP synthesis. Biochemical and mutational studies have begun to reveal the function of individual subunits and residues in V-ATPase activity. A central question in this field is the mechanism of regulation of vacuolar acidification in vivo. Evidence has been obtained suggesting a number of possible mechanisms of regulating V-ATPase activity, including reversible dissociation of V 1 and V 0 domains, disulfide bond formation at the catalytic site and differential targeting of V-ATPases. Control of anion conductance may also function to regulate vacuolar pH. Because of the diversity of functions of V-ATPases, cells most likely employ multiple mechanisms for controlling their activity.
ISSN:0014-5793
1873-3468
DOI:10.1016/S0014-5793(98)01425-2