Loading…

Brain-Derived Neurotrophic Factor Stimulates Hindlimb Stepping and Sprouting of Cholinergic Fibers after Spinal Cord Injury

Neurotrophic factors have been proposed as a therapeutic treatment for traumatic brain and spinal cord injury. The present study determined whether exogenous administration of one such factor, brain-derived neurotrophic factor (BDNF), could effect behavioral recovery and/or histopathological changes...

Full description

Saved in:
Bibliographic Details
Published in:Experimental neurology 1998-11, Vol.154 (1), p.170-184
Main Authors: Jakeman, Lyn B., Wei, Ping, Guan, Zhen, Stokes, Bradford T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neurotrophic factors have been proposed as a therapeutic treatment for traumatic brain and spinal cord injury. The present study determined whether exogenous administration of one such factor, brain-derived neurotrophic factor (BDNF), could effect behavioral recovery and/or histopathological changes after spinal cord injury. Adult rats received a mild or moderate contusion injury or complete transection of the midthoracic spinal cord. Immediately thereafter, they were infused intrathecally with vehicle or BDNF for 28 days. Behavioral recovery was evaluated for 6 weeks after injury, at which time the rats were sacrificed and the spinal cord tissue was examined histologically. The infusion of BDNF resulted in acute stimulation of hindlimb activity. These effects included activation of alternating airstepping in injured rats when the hindlimbs were unloaded as well as slight improvements in the rate of recovery in open field locomotion score. BDNF infusion was also associated with enhanced growth of cholinergic fibers at the injury epicenter, but did not affect white matter sparing or density of serotonergic axons at or below the injury site. Based on immunohistochemical detection of BDNF protein distribution, these described effects are likely to be mediated by the activation of cells and axons within the central injury region and the along the peripheral rim of the spinal cord. Together, these findings demonstrate that the exogenous infusion of BDNF after spinal trauma can influence postinjury outcome through mechanisms that include acute stimulation of hindlimb activity and neuritogenesis at the injury site.
ISSN:0014-4886
1090-2430
DOI:10.1006/exnr.1998.6924