Loading…

All-terrain droplet actuation

Digital microfluidics has become a popular tool for biochemical and biomedical applications. However, its current format is restricted to actuation of droplets on a single plane. Here, we introduce a new method for fluid handling on flexible devices, which we have termed all-terrain droplet actuatio...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2008-01, Vol.8 (5), p.672-677
Main Authors: Abdelgawad, Mohamed, Freire, Sergio L S, Yang, Hao, Wheeler, Aaron R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Digital microfluidics has become a popular tool for biochemical and biomedical applications. However, its current format is restricted to actuation of droplets on a single plane. Here, we introduce a new method for fluid handling on flexible devices, which we have termed all-terrain droplet actuation (ATDA). We show that ATDA can be used to manipulate droplets across a wide range of geometries, including inclined, declined, vertical, twisted, and upside-down architectures. These new geometries enable flexible, straightforward integration of distinct physicochemical environments on monolithic devices. To illustrate this capacity, we developed temperature- and oxygen-sensitive colorimetric sensors, as well as an automated method for selective enrichment of DNA from a heterogeneous mixture. We anticipate that ATDA will be a useful new tool in the growing trend toward laboratory miniaturization.
ISSN:1473-0197
1473-0189
DOI:10.1039/b801516c