Loading…
Waterlike dynamic anomalies in a liquid described by a core-softened potential
We present a theoretical study of transport properties of a liquid comprised of particles interacting via isotropic core-softened potential. Shear viscosity and self-diffusion coefficient are computed on the basis of the mode-coupling theory, with required structural input obtained from thermodynami...
Saved in:
Published in: | The Journal of chemical physics 2008-05, Vol.128 (17), p.174503-174503-6 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a theoretical study of transport properties of a liquid comprised of particles interacting via isotropic core-softened potential. Shear viscosity and self-diffusion coefficient are computed on the basis of the mode-coupling theory, with required structural input obtained from thermodynamically self-consistent integral equation theory. Both self-diffusion coefficient and viscosity display waterlike anomalous density dependence, with diffusivity increasing and viscosity decreasing with density within a particular density range along several isotherms below a certain temperature. Our theoretical results for both transport coefficients are in good agreement with the simulation data. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2917359 |